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Introduction 
 
This paper reports several experiments on how quickly speakers can prepare and produce a subject-verb-
object (SVO) sentence whose verb and arguments are provided as visual-orthographic stimuli. The key 
experimental manipulations were the relative timing of the subject (S), verb (V), and object (O) stimuli. 
The general motivation for investigating S, V, and O stimulus timing in this way is that in everyday settings, 
our attention to events in the world and to the entities which participate in them is unlikely to be 
simultaneous or evenly distributed in time; the effects of this nonsimultaneity on utterance planning and 
production may reveal important information about the mechanisms of syntactic organization.  

For example, consider the following scenario, illustrated in Fig. 1A: you and your friends, Al, Bo, and 
Cam, are playing a game of tag. Al is chasing Bo, and is about to tag him, but you are unaware of this, 
because you and Cam are hiding around the corner. As you peer around the corner, you see Al (A1), then 
you see Al reach out his hand to tag someone (A2), then you see that it is Bo who is being tagged (A3). A 
simple description of the event is Al tagged Bo. Now imagine a different scenario (Fig. 1B), where again 
you and Cam are hiding around the corner. This time you see Bo run into view from around the corner 
(B1), then you see a hand tag him (B2), followed by Al, the owner of the hand (B3). You might say Bo was 
tagged by Al, but you can still say Al tagged Bo. 
 

 
Fig. 1. Schematic illustration of two scenarios in which the timecourse of attention to arguments and an 
event differ. Panels A1-A3 and B1-B3 depict temporal sequences. Black arrows indicate what you see in 
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each time step; purple lines are tagging events. Top row: attention to agent precedes attention to patient. 
Bottom row: attention to patient precedes attention to agent. 

 
What is the difference between these two scenarios? In the first case, your attention was drawn 

initially to the agent of the event (Al), then to the action, and then to the patient (Bo). In the second case, 
your attention was initially draw to the patient of the event (Bo), then to the action, and then to the agent 
(Al). The main question we are interested in here is: do differences in the timecourse of attention such as 
these have any effect on how quickly you can begin to produce the utterance Al tagged Bo? 

We do not have to construct special hypothetical scenarios to obtain contexts in which the timecourse 
of attention to agents, patients, and actions is variable and nonsimultaneous. Even as events unfold in full 
view, our attention to those events and to the entities which participate in them can be unevenly 
distributed in space and time. This nonsimultaneity may have consequences for how speakers organize 
and produce utterances which describe events. By manipulating non-simultaneity of stimuli in a tightly 
controlled production task, we may learn something about how speakers organize syntactic and 
conceptual systems in generating sentences. We focus on production of simple subject-verb-object (SVO) 
sentences here, because SVO is the basic word order of English. The experiments reveal several 
remarkable phenomena, illustrated in Fig. 2 and listed below. 
 

 
Fig. 2. Overview of experimental findings, showing mean RT as a function of O and V stimulus timing 
relative to S (ΔVS and ΔOS). Negative values of ΔVS or ΔOS mean that V or O stimuli precede the S stimulus; 
positive values mean that V or O follow S. Rectangles are 95% confidence intervals; horizontal coordinates 
of datapoints are slightly offset for visual clarity. RT is measured relative to the time at which the S stimulus 
appears, for reasons that we elaborate subsequently.  
 

(i) Δ insensitivity: Response initiation is relatively insensitive to the timing of V and O stimuli relative 
to S stimuli (ΔVS and ΔOS), for asynchronies in the range of ±125 ms.  
 
(ii) Late V delay: Response initiation is delayed substantially when the V stimulus occurs more than 
150 ms after S; the initiation delay associated with late O stimuli is much smaller. 
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(iii) Early V and O facilitation: Response initiation is facilitated when V precedes S by more than 200 
ms. To a lesser extent early O facilitates response initiation as well. 
 

How do such effects arise? Model simulations conducted here show that the effects can be generated by 
combining two mechanisms: (i) activation-based initiation thresholds, and (ii) activation-dependent 
interference between syntactic systems. Furthermore, the specific form of the activation-dependence 
which is sufficient for generating empirical RT patterns is one in which a syntactic system that is more 
active has a weaker interference effect on other syntactic systems. This property may seem counter-
intuitive, but makes sense when we consider what activation represents in the current context. This 
property of the interaction follows from a theoretical principle proposed in (Tilsen, 2019) whereby 
coupled syntactic and conceptual systems must reach a stable oscillatory state before they can be selected 
for production. The stability of this state can be characterized by the phase coherence of the relevant 
systems. Tilsen (2019) argued that when multiple conceptual systems are excited and begin to form 
resonant states with multiple syntactic systems, those resonant interactions interfere with one another 
due to differences in the phases and frequencies of the conceptual systems. Crucially, this interference 
diminishes over time as the conceptual-syntactic resonances stabilize. 

The model presented here adopts a simplified version of this mechanism by reconceptualizing 
syntactic system activation as an index of the phase-coherence of coupled syntactic and conceptual 
systems. Hence the interaction property that greater activation is associated with weaker interference 
follows from the idea that activation of a syntactic system represents the extent to which it has formed a 
stable resonant state with a conceptual system: higher activation equals greater stability and less 
interference.  

Why are the empirical findings important for syntactic theory? Let us assume that a scientific discipline 
should strive to obtain a theoretical understanding which can accommodate the widest variety of 
phenomena. The empirical phenomena reported here are important because most syntactic theories 
have no way of accounting for them. In that case, we should seek a theory which is more powerful. 
 
Basic description of task and design 
Here a brief description of the experimental task and design is provided (see Methods for more detail). 
On each experimental trial, the speaker produces a sentence. Each sentence consists of three words, a 
subject, a verb, and an object. The specific nouns which constitute the subject and object arguments, as 
well as the specific verbs, are conveyed via visual-orthographic stimuli. There are only three unique nouns 
(all monosyllabic proper names), and two unique verbs (both monosyllabic, past tense, experiencer 
verbs). The stimuli are presented in an inverted triangular arrangement on a computer screen (Fig. 3). 
Participants are instructed to interpret the stimuli in the upper left, upper right, and bottom vertices of 
the triangle as the subject (S), object (O), and verb (V), respectively. The S and O are never identical, and 
the specific names/verbs vary randomly from trial-to-trial, selected from the lexicon shown below. 
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Fig. 3. Lexicon, spatial arrangement of stimuli, and mapping from spatial positions to syntactic 
categories. Color is added here to indicate mapping of stimuli positions to categories. 
 
The S-V-O relative timing space 
The main experimental manipulation was the relative timing of the appearance of S, V, and O stimuli. Note 
that once a stimulus appeared on the screen, it remained visible until the end of the trial. Consider the 
space of possible stimulus orderings, where ordering refers to temporal precedence relations. We adopt 
the following convention using curly-brackets, “{}”. For any two stimuli A and B, there are three possible 
orderings in which those stimuli can occur:  
 

{A}{B}: A precedes B 
{B}{A}: B precedes A 
{AB}: A and B occur at the same time  

 
The stimulus {AB} is an unordered set of stimuli, and is indistinct from {BA}. For three stimuli—S, O, and 
V—there are 13 unique orderings. These can be organized in dimensions of pairwise relative ordering as 
in Fig. 4A,  where rows are arranged by the ordering of O relative to S, and columns are arranged by the 
ordering of V relative to S. (For example, the row δOS = -1 contains orderings in which the stimulus set 
containing O immediately precedes the set containing S, and the row δOS = -2 is where the set containing 
O precedes V and V precedes S. Empty cells are impossible orderings. 

An alternative representation is shown in Fig. 4B. The central ordering is the one where no members 
of the set are ordered. The inner circle of orderings are ones which impose partial ordering: two stimuli 
are simultaneous. The outer circle is sets with members which are totally ordered. Fig. 4C shows the 13 
unique orderings as a function of time, aligned to the stimulus set (stimset) containing S. 
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Fig. 4. Visualizations of stimulus ordering space. (A) tabular organization of orderings; (B) circular 
arrangement of orderings; (C) orderings in a temporal dimension, aligned to the stimulus set containing 
S. Colors in (A) and (B) indicate whether all stimuli are synchronous (blue) or whether S is in the first (red), 
second (yellow), or third (purple) stimulus set. 
 

Whereas ordering is an abstract temporal relation, the experiments instantiate ordering with specific 
temporal intervals. A useful depiction of the relative timing of the stimuli can be provided in a two-
dimensional space, which we refer to as a Δ-space, because its dimensions are relative timing measures 
(Δ-measures), i.e. variables which are differences of stimulus times tS, tV, and tO. In this manuscript the 
character “Δ” can often be read as “the relative timing of” or “relative timing”. There are six Δ-measures: 
ΔSV, ΔSO, ΔVO, ΔVS, ΔOS, and ΔOV. The measure “ΔVS” for example, can be read as “the timing of the 
verb stimulus relative to the subject stimulus,” and is defined as ΔVS = tV - tS. A positive value of ΔVS 
indicates that the time of the V stimulus comes after the time of the S stimulus. Likewise, a negative value 
of ΔVS indicates that V comes before S, and a value of 0 indicates that V and S appeared on the screen 
simultaneously. There are three anti-symmetric pairs of relative timing measures:  

 
ΔVS = −ΔSV 
ΔOS = −ΔSO 
ΔVO = −ΔOV 

 
We will almost exclusively use ΔVS and ΔOS, where positive values indicate that V or O occurred after S. 
The main reasons for choosing these particular ones is that they express timing of V and O relative to S, 
and it turns out that the timing of the S is particularly influential in determining RT. (This is not surprising 
given that the sentence always begins with an S.) Nonetheless, the choice of any two measures is sufficient 
to describe the entire space of stimulus relative timing, because the third measure can be calculated from 
the other two, i.e.: 
 
 Δ𝑂𝑂𝑂𝑂 = Δ𝑂𝑂𝑂𝑂 − Δ𝑉𝑉𝑉𝑉 = (𝑡𝑡𝑂𝑂 − 𝑡𝑡𝑆𝑆) − (𝑡𝑡𝑉𝑉 − 𝑡𝑡𝑆𝑆) = 𝑡𝑡𝑂𝑂 − 𝑡𝑡𝑉𝑉  
 Δ𝑂𝑂𝑂𝑂 = Δ𝑂𝑂𝑂𝑂 + Δ𝑉𝑉𝑉𝑉 = (𝑡𝑡𝑂𝑂 − 𝑡𝑡𝑉𝑉) + (𝑡𝑡𝑉𝑉 − 𝑡𝑡𝑆𝑆) = 𝑡𝑡𝑂𝑂 − 𝑡𝑡𝑠𝑠 
 Δ𝑉𝑉𝑉𝑉 = Δ𝑉𝑉𝑉𝑉 + Δ𝑂𝑂𝑂𝑂 = (𝑡𝑡𝑉𝑉 − 𝑡𝑡𝑂𝑂) + (𝑡𝑡𝑂𝑂 − 𝑡𝑡𝑆𝑆) = 𝑡𝑡𝑉𝑉 − 𝑡𝑡𝑆𝑆 
 
The two-dimensional SVO relative timing space (i.e. Δ-space) with dimensions ΔVS and ΔOS is shown in 
Fig. 5. Of the three experiments reported here, Experiment 1 sampled the widest area of Δ-space. 
Experiment 1 used inter-stimulus-intervals (ISIs) of 100, 200, and 300 ms, and imposed the constraint that 
if there were three stimulus sets, the ISI between the second and third sets was the same as the ISI 
between the first and second set. This constraint only comes into play when there are three unique 
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stimulus sets. Observe that the 13 unique orders from Fig. 4 correspond to lines in the Δ-space of Fig. 5, 
or in the case of {SVO} a single point at the origin. The points are colored according to whether the stimuli 
were simultaneous (blue), or whether the S stimulus occurred in the first set (orange), second set (yellow), 
or third set (purple).  

 
Fig. 5. Sampling of SVO stimulus timing space in Experiment 1. Lines connect timing patterns with the 
same ordering but different inter-stimulus-intervals (ISIs). 
 
(Non)orthogonality of ΔVS and ΔOS. An important consideration for regression analyses of effects of 
stimulus timing on RT is that ΔVS and ΔOS (the predictor variables) are not orthogonal across the full Δ-
space. Thus linear regressions of RT on the full set of Δ-values may incorrectly estimate the coefficients of 
Δ terms, because these terms are collinear (Tomaschek et al., 2018). In order to obtain more precise 
coefficient estimates, a subset of the space in which predictors are orthogonal is analyzed when 
appropriate. However, our main interest in the current context is not in estimating linear coefficients (i.e. 
linear statistical inference), but rather, in evaluating generative dynamical models of RT patterns. In that 
context, the nonorthogonality of the full space of predictors in unproblematic. 
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Reaction time definition 
Consider the timecourse of events associated with an example trial in Fig. 6. In this example, the ordering 
is {V}{S}{O} and the ISI is 200 ms. Henceforth we refer to timing patterns as a combination of an ordering 
and an ISI, e.g. {V}{S}{O}/200. The timing pattern {V}{S}{O}/200 has ΔVS=-200 and ΔOS=200 ms. The trial 
onset (tONS, the appearance of the fixation cross) always precedes the first stimset by 750 ms. Because this 
interval is fixed, the timing of the first stimulus is highly predictable. The images at the bottom of the 
figure represent what the participant sees on the screen. 
 

 
Fig. 6. Stimulus timing pattern {V}{S}{O}/200. Two alternative definitions of RT are shown, RT_[S] and 
RT_first_[SVO]. 
 

There are five events on each trial, which occur at times: tONS, tS, tV, tO, and tRESP—but not necessarily 
in that order. The trial onset tONS is defined as time 0. The event times tS, tV, tO are the stimulus times. The 
event tRESP is the first time of detection of response-related acoustic energy (i.e. response detection time). 
Our main interest is in constructing a dynamical model of response preparation and initiation which 
relates the stimulus event times (independent variables) and the response initiation time (a dependent 
variable). We can also define more abstract “events” such as the time of the first stimset, tFIRST = min(tS, tV, 
tO), and the time of the last stimset, tLAST = max(tS, tV, tO). On {SVO} trials, tFIRST = tLAST.  

An important point to make here is that there is not one unique definition of RT, and so we have to 
make decisions regarding which RT measure(s) to analyze. All RTs we consider will be defined as tRESP 
relative to a reference time, i.e. tRESP - TREF, and hence we have to choose a reference time. One reference 
time which seems obvious is the trial onset, tONS, in which case RT is the time from the trial onset to the 
response onset. Indeed, this definition of RT seems to require minimal intervention on our part given that 
tRESP and all other events have already been defined relative to the trial onset. Instead of using trial onset 
as a reference time, we could alternatively use the first stimulus, i.e. TREF = tFIRST. This is equivalent to using 
TREF = tONS as far as our models are concerned, because there is a constant offset between tONS and tFIRST 
(750 ms)—the two variables are perfectly correlated. We refer to this definition of RT as RT_first_[SVO], 
to indicate that RT is defined relative to whichever comes first, S, V, or O. 
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However, consider that there is a hard constraint that the participant cannot begin to produce the 
response until the S stimulus has appeared. This suggests that tS might be a particularly relevant reference 
event for the processes which determine tRESP, in which case we might choose to analyze a different RT 
measure: RT_[S] = tRESP – tS. Indeed, analysis of RT_[S] is consistent with our decision to adopt ΔVS and 
ΔOS as the coordinates of relative timing space—these Δ-measures and RT_[S] arise from transforming 
event times tS, tV, tO, and tRESP in an equivalent way on each trial, i.e. by subtracting tS from each of them. 
 There are in fact many other ways of defining the reference time that we might consider. Eleven 
alternative definitions of RT are listed in Table 1, along with some examples of the reference time that is 
calculated from some specific stimulus event times. These definitions are distinguished by the function 
used to calculate TREF. Here we consider references times which are defined with a single minimum, 
maximum, or identity function of a set (or subset) of stimulus times.  
 

Table 1. Alternative definitions of RT 
  [tS, tV, tO] = 
name TREF = [0, 0, 0] [0, .1, .2] [0, 0, .1] [.2, .1, .0] 
RT_first_[SVO] min(S,V,O) 0 0 0 0 
RT_first_[SV] min(S,V) 0 0 0 0.1 
RT_first_[SO] min(S,O) 0 0 0 0 
RT_first_[VO] min(V,O) 0 0.1 0 0 
RT_[S] S 0 0 0 0.2 
RT_[V] V 0 0.1 0 0.1 
RT_[O] O 0 0.2 0.1 0 
RT_last_[SVO] max(S,V,O) 0 0.2 0.1 0.2 
RT_last_[SV] max(S,V) 0 0.1 0 0.2 
RT_last_[SO] max(S,O) 0 0.2 0.1 0.2 
RT_last_[VO] max(V,O) 0 0.2 0.1 0.1 

 
The decision to analyze one measure instead of any other measures may seem arbitrary. Is there a 

principled way in which we can justify this choice? One rationale for choosing a particular RT measure is 
to assess which measure has the lowest variance in empirical data. Fig. 7 shows the empirical standard 
deviations from Exp. 1 of the measures in Table 1, arranged horizontally from lowest to highest variance. 
Note that standard deviations were calculated after outliers were excluded and after participant means 
were subtracted (see Methods for further information). RT_last_[SV] is the measure with the lowest 
variance. This RT measure takes tREF as tS or tV, whichever comes later. The measures RT_[S] and 
RT_last_[SVO] are the measures with the next lowest variances. Note that the ranking of measures by 
variance is the same regardless of whether participant means are factored out. 
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Fig. 7. Standard deviations of RT measures from Experiment 1. The horizontal axis is sorted according to 
the standard deviations of the measures, with increasing variance from left to right.  
 

The four lowest-variance measures are the only ones in which tREF will be tS when S is in the last 
stimset. This may not be surprising, because knowledge of S is required for the participant to initiate the 
correct response. The time of the stimset that contains S provides a hard constraint on when the response 
can be initiated. The fact that RT_last_[SV] has the lowest variance is somewhat unexpected. For this 
measure the reference time is whichever comes later, S or V. The measures with the highest variances are 
ones in which the S stimulus does not contribute to the reference time.  

Although standard deviation is one possible basis for rationalizing a choice of RT measure, its utility is 
based on the assumption that all RT distributions are approximately Gaussian. This assumption is false, as 
is evident from the distributions of several different RT measures are shown in Fig. 8. An alternative to 
standard deviation is entropy, a measure of the uniformity of the distribution (or the amount of 
information produced by sampling from the distribution). Table 2 shows entropies of the RT distributions 
and the mutual information of the RT and stimulus time distributions. The entropies of the RT distributions 
were calculated by counting the empirical RTs in 20 ms bins, converting the counts to probabilities, and 
applying the formula H = −∑ 𝑝𝑝(𝑖𝑖) 𝑙𝑙𝑙𝑙 𝑝𝑝(𝑖𝑖)𝑖𝑖 . Note that to calculate entropies and joint entropies, we 
follow the convention that 0 × ln (1/0) = 0 (MacKay, 2003). In a loose sense, the entropies correspond to 
the amount of disorder in the distributions. RT_[S] is the most ordered distribution, i.e. the distribution 
associated with the least uncertainty/lowest entropy, despite the fact that RT_last_[SV] has a lower 
standard deviation. 
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Fig. 8. Selected RT distributions. Participant means were subtracted from RTs, and values were rounded 
to the nearest multiple of 20 ms. 
 

The mutual information I(RT;STIM) in Table 2 is a measure of dependence between RT and stimulus 
times. It is the amount of information about RT that is available from knowledge of the stimulus times. 
The mutual information is calculated as the information in the joint distribution of stimulus times plus the 
information in the RT distribution minus the information in the joint distribution of RTs and stimulus times, 
i.e.: 

 
I(𝑅𝑅𝑅𝑅; 𝑡𝑡𝑆𝑆, 𝑡𝑡𝑉𝑉 , 𝑡𝑡𝑂𝑂) = H(𝑡𝑡𝑆𝑆, 𝑡𝑡𝑉𝑉 , 𝑡𝑡0) + H(𝑅𝑅𝑅𝑅)− H(𝑅𝑅𝑅𝑅, 𝑡𝑡𝑆𝑆 , 𝑡𝑡𝑉𝑉 , 𝑡𝑡𝑂𝑂) 

 
where: 
 

H(𝑅𝑅𝑅𝑅, 𝑡𝑡𝑆𝑆, 𝑡𝑡𝑉𝑉 , 𝑡𝑡𝑂𝑂) = ����𝑝𝑝(𝑅𝑅𝑅𝑅, 𝑡𝑡𝑆𝑆, 𝑡𝑡𝑉𝑉 , 𝑡𝑡𝑂𝑂) 𝑙𝑙𝑙𝑙 𝑝𝑝(𝑅𝑅𝑅𝑅, 𝑡𝑡𝑆𝑆, 𝑡𝑡𝑉𝑉 , 𝑡𝑡𝑂𝑂)
𝑡𝑡𝑂𝑂𝑡𝑡𝑉𝑉𝑡𝑡𝑆𝑆𝑅𝑅𝑅𝑅
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Table 2. Comparison of RT measure distributions 
RT_meas std(RT) H(RT) I(RT;STIM) 
RT_last_[SV] 0.120 3.15 0.39 
RT_[S] 0.127 3.13 0.38 
RT_last_[SVO] 0.136 3.27 0.51 
RT_last_[SO] 0.143 3.32 0.57 
RT_first_[SV] 0.152 3.37 0.62 
RT_first_[SO] 0.159 3.41 0.66 
RT_first_[SVO] (=RT_ons) 0.166 3.47 0.71 
RT_last_[VO] 0.179 3.59 0.84 
RT_first_[VO] 0.191 3.65 0.90 
RT_[V] 0.197 3.67 0.92 
RT_[O] 0.217 3.79 1.03 

 
If we were to use standard deviation as the sole criterion for selecting an RT measure for analyses, 

then we would choose RT_last_[SV] over RT_[S]. However, one problem with this choice is its 
interpretability: it puts us in a situation where the independent variables ΔVS, ΔOS depend on tS while the 
dependent variable depends on max(tS, tV). On the other hand, consider that the RT_[S] distribution has 
the lowest entropy and the lowest mutual information with the stimulus times, which means that RT_[S] 
is most ordered/least uniform distribution, and that stimulus times contain less information about RT_[S] 
than they do about any other measure. This second property is desirable in order to maximize the extent 
to which Δ measures can predict variation in RT.  

On the basis of the above, and also taking into account its greater interpretability, RT_[S] compares 
favorably to the other measures and hence will be our measure of choice for regression analyses. 
Nonetheless, the reader should keep in mind that this choice is somewhat arbitrary. This should not affect 
our interpretation of the mechanisms which determine response initiation. Fortunately, the optimization 
of dynamical models we implement below is not sensitive to the choice of RT measure. The models take 
stimulus times tS, tV, and tO as input and output tRESP. Both the stimulus times and RT are defined in the 
temporal coordinate of the dynamical model, where by definition TREF = tONS = 0. Moreover, the entropies 
of the joint distribution of {ΔVS, ΔOS, RT} or equivalently of {tS, tV, tO, RT}, are equal and independent of 
the choice of RT measure. 
 
How to analyze the experimental data?  
We should not assume that regression models are appropriate analysis instruments. Typically, we might 
be interested in a question such as “how does the relative timing of the S and V stimuli influence RT?”, 
where ΔVS is a predictor and RT is a response variable. There are a variety of problems with such an 
approach.  

First, our relative timing variables ΔVS and ΔOS are highly correlated, which induces collinearity in a 
regression analysis. Second, our choice of how to define RT is somewhat arbitrary. Third, what basis do 
we have for assuming that there are linear functional relations between predictors and response 
variables, or even particular nonlinear functional relations? Our use of regression is so habitual that we 
often fail to recognize that such relations are unlikely to obtain for the vast majority of systems that we 
investigate. To the extent that we can (but not necessarily should) use regression instruments, we may 
obtain functional relations between predictor and responses, where coefficients are merely 
approximations of how certain variables influence the outcomes of complex processes. Indeed, these 
coefficients can be highly biased even for fairly simple processes.  
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Instead of focusing on these approximations, we direct most of our focus to hypotheses regarding the 
dynamical processes themselves, and evaluate the ability of these hypothesized processes to generate 
data which are similar to our empirical data. This analysis-by-synthesis approach is crucial when we have 
reason to believe that the relations between dependent and independent variables are not well-described 
by known analytic functions. 
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A simplified dynamical model 
 
Here we construct a simplified dynamical model of task behavior. The model is “simplified” relative to the 
model proposed in Tilsen (2019), in that it does not have an explicit mechanism for associating syntactic 
categories (S, V, O) to concepts (Lee, Moe, Ray, heard, saw). Instead, the simplified models assume that 
categories are correctly associated with stimuli. In all cases, the arguments (S, O) and event (V) are 
modeled as systems with activation variables that exhibit linear growth when the corresponding stimuli 
appear. As described above, these activation variables are understood to represent the stability of 
coupled oscillations of syntactic and conceptual systems (Tilsen, 2019), and when interactions between 
systems are included in the model, it is assumed that systems with greater activation have weaker effects 
on other systems. 

Before optimizing the model to fit empirical data, we examine how well various parameterizations of 
the model can account for hypothetical RT patterns. Consider that it is obviously the case that RT patterns 
depend on absolute timing of stimuli (i.e. tS, tV, tO). The analysis of hypothetical patterns shows us that if 
RT patterns also depend on the relative timing of stimuli (i.e. ΔVS and ΔOS), then the model should include 
both category-specific parameters and asymmetric interactions between systems. This finding is highly 
relevant to interpreting empirical data, which unambiguously exhibit dependence on relative timing of 
stimuli. We can thus infer that any sufficient model must distinguish S, V, and O systems and must allow 
them to interact in asymmetric ways. 
 A key ingredient in all of the models is an initiation criterion. The initiation criterion is state which 
must obtain before a response can be initiated. This criterion is modeled as a function of system 
activations, and determines RT. We will consider how various definitions of the initiation criterion 
constrain what types of RT patterns (i.e. relations between independent variables and RT) can occur. 
Crucially, we show that there is a class of RT patterns which cannot be generated without allowing for S, 
V, and O systems to interact. 
 
What is the participant doing? 
What are participants in the experiment doing to accomplish the task? Consider that participants were 
instructed to respond as quickly as possible, but also to speak clearly. Feedback was provided to promote 
these goals (see Methods for further details). Fig. 9 depicts a hypothetical timecourse of the preparatory 
processes which occur on a single trial, with the timing pattern {V}{S}{O}/200. Recall that the onset of each 
trial was cued by a central fixation cross that remained visible for 750 ms. During this period of time the 
speaker has no knowledge of the particular arguments (S and O) or verb (V) that determine the response—
hence we refer to this period as the uninformed preparation phase. Note that the beginning of the 
uninformed preparation phase may extend as early as the offset of the preceding trial. We will assume 
that each unique stimset (set of simultaneous stimuli) must be visually processed and its corresponding 
word forms must be linguistically and motorically organized, before those word forms can be produced, 
but we do not assume that all stimuli must be processed before the response can be initiated. 
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Fig. 9. Schematic illustration of preparatory processes for a single trial with the timing pattern 
{V}{O}{S}/200. The intervals which correspond to RT_first_[SVO] and RT_[S] are shown. 
 

In order to construct various alternative interpretations of the cognitive processes which influence RT 
in the task, we adopt a model in which there are syntactic systems |S|, |V|, and |O|. Furthermore, we 
posit there are processes affecting the states of these systems which must occur before the response can 
be initiated. Specifically, there is an initiation criterion which must obtain before a speaker initiates the 
motor response associated with the stimuli. The initiation criterion will always be formulated in relation 
to the states of the syntactic systems.  

In the simplified models developed here, there is no explicit representation of the conceptual and 
motoric systems associated with the stimuli. Nonetheless, it is assumed that there are conceptual systems 
which, when excited, give rise to meaning experiences that we can associate with names like Lee, Moe, 
and Ray, or with event frames like saw and heard; furthermore, the stimuli are also associated with 
sensory and motoric systems involved in the production of the word forms. The conceptual and motoric 
systems must be at least partly associated with syntactic systems before the response can be initiated. 
The mechanism of conceptual-syntactic “association” (or conceptual-syntactic binding) is hypothesized to 
be an entrainment of oscillatory systems through phase-coupling (Tilsen, 2019), and crucially, is extended 
in time. For example, to produce the sentence Lee saw Moe, the conceptual system associated with Lee 
must be associated with the |S| syntactic system.  

To represent the timecourse of conceptual-syntactic association processes we employ state variables, 
one for each syntactic system. For simplicity, these syntactic system state variables are modeled as scalar 
variables with values in the range [0, 1]. A value of 0 corresponds to a state in which the conceptual-
syntactic association process has not begun; a value of 1 corresponds to a state in which the association 
process has completed. To further flesh out the model, we address the following questions: 
 

(i) How do syntactic system states change in response to stimuli? 
(ii) What is the response initiation criterion? 
(iii) What are the states of syntactic systems in the pre-stimulus period? 
(iv) What is the nature of the interaction between syntactic system states? 
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(i) How do system states change in response to stimuli? 
When a stimulus appears, the corresponding syntactic system will begin to associate with the 
motoric/conceptual systems that correspond to the stimulus, and the syntactic system will be organized 
in a way that prepares the associated motoric systems for execution. These association and organization 
processes occur over a period of time. The timecourse of this process is represented with an activation 
variable, one for each syntactic system, with values in the range [0, 1]. Furthermore, for simplicity, we 
assume that activation grows at a constant rate, once the stimulus is visible. Note that because there is 
an invariant mapping between the spatial locations of the stimuli and their syntactic roles, there is no 
ambiguity in which conceptual and motoric systems should be associated with which syntactic systems. 
 
(ii) What is the initiation criterion? 
Recall that the initiation criterion is a state that must obtain before motor initiation. There are many 
reasonable initiation criteria, but we will focus on some of the simpler possibilities and the relations 
between them. All initiation criteria we consider here are based on the idea that motor initiation can begin 
when all syntactic system activations have reached thresholds (or, a function of activation states reaches 
a threshold). Specifically, we will consider two types of initiation criteria: one type involves a uniform 
threshold, where the same threshold value applies to all syntactic systems, and the other type involves 
category-specific thresholds, where each syntactic system has a different threshold We will also assume 
that there is a fixed delay between the time that the initiation criterion is achieved and the time when the 
first acoustic evidence of motor initiation is observed. To represent the dynamics of response initiation, 
we construct a response initiation gate system with a binary state variable. 
 
(iii) What are the states of syntactic systems in the pre-stimulus period? 
Because activation of syntactic systems by definition represents stimulus-specific preparatory processes, 
we impose the constraint that syntactic systems have 0 activation in the pre-stimulus period. This 
constraint is probably incorrect, as it seems reasonable that syntactic systems will have some non-zero 
level of activation in anticipation of the stimuli. However, as we will see below, the effects of variation in 
initial activation can be equivalently modeled via activation growth rate and threshold parameters. 
(However, this equivalence only strictly holds in the absence of interactions). 

 
(iv) What is the nature of the interaction between syntactic system states? 
One possibility is that syntactic systems do not interact at all. In contrast, if interactions do occur, there 
are many reasonable ways to model those interactions. The theory underlying the model (Tilsen, 2019) 
holds that conceptual-syntactic association processes may interfere with each other. For example, if both 
|Moe| and |Lee| concept systems have been excited, then the association processes that must occur 
between these systems and |S| and |O| syntactic systems will interact, such that these processes may 
delay one another. Moreover, these interference effects are hypothesized be stronger earlier on in the 
association process, before stable, coherent systems states have been achieved. Thus the magnitude of 
the interference effect of system A on system B should be related to the activation variable of A, such that 
it is stronger when the activation of A is lower. To limit the space of possible models, we only consider 
linear interactions where the influence of A on B is linearly proportional to the activation of A. We often 
refer to these interactions as interference, and we impose the constraint that the interference is always 
destructive (it has a negative sign). 
 
Model implementation 
To facilitate subsequent exposition, we define the following variables and parameters, listed in Table 3. It 
is useful to distinguish between three categories of variables/parameters. First, there are state variables, 
which represent the time-varying states of systems in the model. Second, there are optimized parameters, 
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which are quantities that determine various model processes and outputs. These are the quantities that 
we may optimize so that the model can generate empirical patterns as closely as possible. We do not 
necessarily allow of these to vary in a given optimization, however. Third, there are fixed 
parameters/variables. These are quantities that provide information that is already known—in particular, 
a vector which represents whether each stimulus is visible at a given point in time. To optimize the models 
we include tRESP, the empirically observed response time, which is associated with a particular stimulus 
event time vector T (= [tS, tV, tO]). The cost function is the sum of squared errors between empirical 
response times and model generated response times. 
 

Table 3. Variables and parameters of the dynamical models 
 
State variables: 
x(t) activation a vector of syntactic system activation values: [xS, xV, xO] 
R(t) binary response initiation gate 
   
Optimized parameters: 
x0 activation a vector of syntactic system initial conditions: [xS0, xV0, xO0] 
g activation/second a vector of syntactic system growth rates: [gS, gV, gO]  
τ activation a vector of syntactic system initiation criterion thresholds: [τS, τV, τO] 
C dimensionless a matrix of syntactic system coupling strengths 
m seconds response gating initiation delay 
   
Fixed parameters/variables: 
T seconds a vector of stimulus event times: [tS, tV, tO] 
σ(t) binary a vector of stimulus states (0=visible, 1=not visible): [σS, σV, σO] 
tRESP seconds an empirically observed response initiation time 

 
For convenience we use the indices i,j ∈ {S,V,O} to refer to any syntactic system. The general equation 
describing the time evolution of each syntactic system is: 
 

𝑥𝑥𝚤̇𝚤 = σ𝑖𝑖(𝑡𝑡) �𝑔𝑔𝑖𝑖 + �𝐶𝐶𝑖𝑖𝑖𝑖ν𝑗𝑗
𝑗𝑗

� 

 
The variable  ν𝑗𝑗 = 1 − 𝑥𝑥𝑗𝑗  is the difference between the maximum system activation value and the current  
value. The equation states that the rate of change of system activation is the product of the time-varying 
stimulus state σi(𝑡𝑡) and the sum of the system intrinsic growth rate 𝑔𝑔𝑖𝑖 and coupling forces. The stimulus 
state is either 0 or 1 (not visible or visible), so the equation holds that there is no change in activation of 
a system from the initial condition until the corresponding stimulus occurs. This ensures that coupling 
forces have no effect on a system until its corresponding stimulus has appeared. Notice that this equation 
is non-autonomous—the stimulus states σ(t) are time-dependent. The stimuli act to allow for activation 
to grow at a constant rate specified by g and to admit interaction forces specified by ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗 ν𝑗𝑗, where ν𝑗𝑗 =
1 − 𝑥𝑥𝑗𝑗. Note also that this equation does not reflect the present of an activation ceiling or floor; these are 
imposed externally in dynamical simulations. When there are no interactions between systems, i.e. Cij = 
0, the solution of the equation for one system is below, where 𝑥𝑥𝑖𝑖0 is the initial activation of the system: 
 

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖0 + σ𝑖𝑖(𝑡𝑡)𝑔𝑔𝑖𝑖  
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Furthermore, the state of the initiation gate is defined as: 
 

 R(t) = xS(t) ≥ τS  ∧  𝑥𝑥𝑉𝑉(𝑡𝑡) ≥ τ𝑉𝑉  ∧  𝑥𝑥𝑂𝑂(𝑡𝑡) ≥ τ𝑂𝑂 
 
This means that the initiation gate is open (R=1) when all three system activation values are at or above 
their thresholds; otherwise the gate is closed (R=0). For convenience we define δ𝑖𝑖  as the first time that 
𝑥𝑥𝑖𝑖 ≥ τ𝑖𝑖, i.e. the time of threshold acheivement for a given system. The response initiation time is then: 
 

 𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

(δi) + m 
 
The parameter 𝑚𝑚 represents the duration of motoric processes that intervene between the time when 
the initiation gate is first opened and the first detection of acoustic energy associated with the response. 
Note that the model does explicitly represent the fixed period of time between when a stimulus appears 
and when the relevant information is available for syntactic organization (i.e. low-level visual processing). 
When there are no interactions between systems, δ𝑖𝑖  can be analytically determined as: 
 

 δ𝑖𝑖 = 𝑡𝑡𝑖𝑖 + τ𝑖𝑖−𝑥𝑥𝑖𝑖0
𝑔𝑔𝑖𝑖

= 𝑡𝑡𝑖𝑖 + ϵ𝑖𝑖
𝑔𝑔𝑖𝑖

    where   ϵ𝑖𝑖 = τ𝑖𝑖 − 𝑥𝑥𝑖𝑖0 

 
The equation above states that the first time δ𝑖𝑖  at which a given system reaches its threshold is the 

time that its corresponding stimulus appeared 𝑡𝑡𝑖𝑖 plus the ratio of the difference between the threshold 
and the initial activation, τ𝑖𝑖 − 𝑥𝑥𝑖𝑖0 = ϵ𝑖𝑖, to the growth rate, 𝑔𝑔𝑖𝑖, which is expressed in units of activation 
per time. This relation only holds when there are no system interactions, and assumes that 𝑥𝑥i0 < τ𝑖𝑖, i.e. 
the initial activation is below the threshold, or equivalently ϵ𝑖𝑖 > 0. This latter assumption is only necessary 
for the |S| system, because otherwise the response could be initiated before the S word form is known. 
Note that as ϵ𝑖𝑖 → 0, the time of threshold achievement becomes the stimulus time, i.e. δ𝑖𝑖 → 𝑡𝑡𝑖𝑖. 

As illustrated in Fig. 10, there are three ways to lower δ𝑖𝑖: increase the starting activation, decrease 
the threshold, or increase the growth rate. Indeed, parameter combinations associated with constant δ𝑖𝑖  
are planes in 𝑥𝑥𝑖𝑖0, τ𝑖𝑖 ,𝑔𝑔𝑖𝑖 space, as shown in on the right of Fig. 10. A consequence of this redundancy is that 
in optimizing models which lack interactions between systems, we can fix any two of these parameters; 
moreover, the planes of constant δ𝑖𝑖  for a given system do not depend on the activation of the other two 
systems. However, when interactions are included in the model, planes of constant δ depend on the 
timing of all three stimuli, often in complicated ways. 
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Fig. 10. Parameter combinations associated with constant δ𝑖𝑖  are planes in 𝑥𝑥𝑖𝑖0, τ𝑖𝑖 ,𝑔𝑔𝑖𝑖 space 
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Model capabilities 
 
Below we examine which model parameters must be unconstrained in order to generate different types 
of RT behavior. The models are listed in Table 4 and derive from varying: (1) whether τ parameters have 
a uniform value across systems or are category-specific; (2) whether 𝑔𝑔 parameters are uniform or 
category-specific; and (3) whether there are interactions between systems. The motor initiation delay (m) 
was fixed at 0.050 s in all cases. Even though it is possible in some cases (when there are no interactions) 
to determine the model outputs analytically, a brute force numerical optimization procedure was used 
(see Methods for further detail).  
 

Table 4. Models examined 
models num. free 

params 
threshold growth rate interactions 

τ1_g1 2 
τ𝑆𝑆 = τ𝑉𝑉 = τ𝑂𝑂 

𝑔𝑔𝑆𝑆 = 𝑔𝑔𝑉𝑉 = 𝑔𝑔𝑂𝑂 
𝐶𝐶 = 0 

 
τ1_g3 4 𝑔𝑔𝑆𝑆,𝑔𝑔𝑉𝑉 ,𝑔𝑔𝑂𝑂 
τ3_g1 4 

τ𝑆𝑆, τ𝑉𝑉 , τ𝑂𝑂 
𝑔𝑔𝑆𝑆 = 𝑔𝑔𝑉𝑉 = 𝑔𝑔𝑂𝑂 

τ3_g3 6 𝑔𝑔𝑆𝑆,𝑔𝑔𝑉𝑉 ,𝑔𝑔𝑂𝑂 
τ1_g1_C6 8 

τ𝑆𝑆 = τ𝑉𝑉 = τ𝑂𝑂 
𝑔𝑔𝑆𝑆 = 𝑔𝑔𝑉𝑉 = 𝑔𝑔𝑂𝑂 

𝐶𝐶 = �
0 𝑐𝑐𝑆𝑆𝑆𝑆 𝑐𝑐𝑆𝑆𝑆𝑆
𝑐𝑐𝑉𝑉𝑉𝑉 0 𝑐𝑐𝑉𝑉𝑉𝑉
𝑐𝑐𝑂𝑂𝑂𝑂 𝑐𝑐𝑂𝑂𝑂𝑂 0

� 
τ1_g3_C6 10 𝑔𝑔𝑆𝑆,𝑔𝑔𝑉𝑉 ,𝑔𝑔𝑂𝑂 
τ3_g1_C6 10 

τ𝑆𝑆, τ𝑉𝑉 , τ𝑂𝑂 
𝑔𝑔𝑆𝑆 = 𝑔𝑔𝑉𝑉 = 𝑔𝑔𝑂𝑂 

τ3_g3_C6 12 𝑔𝑔𝑆𝑆,𝑔𝑔𝑉𝑉 ,𝑔𝑔𝑂𝑂 
 

The RT behaviors we use for assessing the model capabilities are simulated, hypothetical behavioral 
patterns, listed in Table 5. Note that these behaviors do not necessarily reflet empirical data, but rather 
are simulated behaviors which correspond to different ways in which stimulus timing might influence RT. 
The point of beginning our analysis with the stimulated RTs is to help us reason about what sorts of RT 
behaviors the models can generate, i.e. to test the capabilities of the model under different constraints. 
The stimulated RTs assume a processing time (μ) of 500 ms for each stimulus, which is close to the 
empirical mean RT across participants for the {SVO} condition in Experiment 1. 
 

Table 5. Hypothesized RT patterns 
for testing model capabilities 
 RT behaviors definition 
(A) SVO-all RT = μ + max(S,V,O) 
(B) SV-all RT = μ + max(S,V) 
(C) S-only RT = μ + S 
(D) SVO-any RT = μ + min(S,V,O) 
(E) SV-any RT = μ + min(S,V) 
(F) S_ΔVS RT = μ + S + aΔVS 

 
Behaviors (A)-(E) are ones in which RT depends on a min, max, or identity function of some set of 

stimulus times. Behavior (F) is different: RT depends on the timing of S and the relative timing of V and S, 
i.e. ΔVS. Here the parameter a = 0.25.  Table 6 shows the mean absolute error (MAE) between optimized 
model predictions and the simulated RTs from each of hypothesized RT behaviors, for all of the Exp. 1 
timing patterns. The cells with “*” indicate that the model generates the behavior with zero error (or more 
precisely, within the tolerance of the optimization, 0.001 s). 
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Table 6. MAE of models for simulated RT behaviors 
  no interactions interactions 
  uniform threshold specific thresholds uniform threshold specific thresholds 
 behavior τ1_g1 τ1_g3 τ3_g1 τ3_g3 τ1_g1_C6 τ1_g3_C6 τ3_g1_C6 τ3_g3_C6 
(A) SVO-all * * * * * * * * 
(B) SV-all 0.049 0.001 * * 0.023 0.002 * * 
(C) S-only 0.132 0.010 * * 0.057 0.009 * * 
(D) SVO-any 0.124 0.106 0.097 0.097 0.055 0.051 0.038 0.032 
(E) SV-any 0.135 0.126 0.124 0.124 0.074 0.074 0.054 0.073 
(F) S_ΔVS 0.099 0.045 0.042 0.042 0.041 0.021 0.013 0.013 

 
First, the results of the optimizations show that category-specific thresholds are necessary to generate 

RT behaviors in which RT is determined by the maximum of a subset of stimulus times (SV-all) or a single 
stimulus (S-only). This is evident from the fact that the only the models with category-specific τ can 
generate behaviors (B) and (C) with minimal error. 

Second, the optimizations show that no models can generate behaviors in which RT is determined by 
the minimum of a set of stimulus times. This is evident from the fact that no models obtained zero error 
for SVO-any (D) or SV-any (E). This deficiency can be viewed as a desirable feature of the models, since we 
do not expect such behavior to occur experimentally: for example, this would amount to participants 
initiating the sentence based upon whether either the S or V stimulus has appeared. 

Third, the optimizations show that interactions and category-specific thresholds are useful for 
generating behavior (F), where the relative timing of V and S stimuli influences RT. No models were able 
to generate (F) with zero error. Nonetheless, the models with both specific τ and interference interactions 
provided substantially lower error than other models. This observation justifies our use of such models as 
tools to interpret empirical RT patterns. 
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Overview of experiments 
 
The timing patterns examined for all three experiments are shown in Fig. 11. Exp. 1 investigated inter-
stimulus-intervals (ISIs) of 100, 200, and 300 ms for all 13 orderings, and imposed the constraint that if 
there were three stimsets, the ISI between the second and third stimsets was the same as the ISI between 
the first and second stimsets. Note that this constraint only comes into play when there are three unique 
stimsets. The 13 orderings of stimuli correspond to lines in Δ-space, or in the case of {SVO}, a single point 
at the origin. The points are colored according to whether the stimuli were simultaneous (blue), or 
whether the S stimulus occurred in the first stimset (orange), second stimset (yellow), or third stimset 
(purple).  
 

 
Fig. 11. Sampling of Δ-spaces in Experiments 1-3. The points are colored according to whether the stimuli 
were simultaneous (blue), or whether the S stimulus occurred in the first stimset (orange), second stimset 
(yellow), or third stimset (purple). In Exps. 1 and 2, stimulus timing patterns were sampled randomly; in 
Exp. 3, timing patterns were blocked and ordered by decreasing ISI.  

 
Exps. 2 and 3 focused on orderings in which S is in the first stimset. In Exps. 1 and 2, the timing pattern 

for each trial was sampled randomly from the set of all timing patterns tested in the experiment. More 
precisely, trials were sampled randomly without replacement in blocks which contained the set of all 
possible timing patterns, obtained by crossing all orderings with all ISIs (see Methods for further detail). 
Participants were unaware of this blocking structure. In contrast, in Exp. 3, participants could easily infer 
the blocking of timing patterns: blocks were ordered by decreasing ISI and by stimulus orderings. There 
were 24 total blocks in Exp. 3 (the sequential order of non-simultaneous blocks is shown in the figure), 
and these were grouped in subsets of four, where each subset began with a simultaneous block {SVO}, 
and then had {SV}{O}, {SO}{V}, and {S}{VO} blocks, in that order (see Fig. 11). Hence the first block was 
{SVO}, the second was {SV}{O} with an ISI of 300 ms, and so on. The aim of the Exp. 3 design was to 
eliminate uncertainty regarding the timing and spatial location of information necessary to produce the 
sentence. 
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Experiment 1 Reaction times 
 
Predictions 
The RT patterns that we expect to see at the sampled points in Fig. 11 depend not only our model of task 
behavior but also on the RT measure that we choose. As motivated above, we focus primarily on RT_[S]. 
In some cases we also illustrate predicted and empirical patterns with RT_first_[SVO], which when 
compared with RT_[S] helps highlight the importance of the S stimulus. Fig. 12 shows heatmaps of 
predicted RT patterns for two different dynamical models, the parameters of which are detailed in Table 
7. The S-only and SV-all models differ in that S-only has a non-zero threshold only for τS, while SV-all has 
non-zero thresholds for τS and τV. Consider that τi = 0 entails that the initiation criterion is not sensitive to 
stimulus time ti. Thus RT predictions of the S-only model are not directly sensitive to tV or tO (and 
accordingly, are not sensitive to ΔVS or ΔOS); this represents a null hypothesis that response initiation 
does not depend on relative timing of stimuli, only on the absolute timing of S. 
 

Table 7. Model parameters and predictions. 
response 
model 

initial  
activation 

 
threshold 

 
growth rate 

Δ-space RT variation by measure 
RT_first_[SVO] RT_[S] 

S-only 
 
 
 𝑥𝑥𝑆𝑆, 𝑥𝑥𝑉𝑉 , 𝑥𝑥𝑂𝑂 > 0 

 

τO = τV = 0 
τ𝑆𝑆 > 0 

𝑔𝑔𝑆𝑆,𝑔𝑔𝑉𝑉 ,𝑔𝑔𝑂𝑂 = 𝑔𝑔 
 

minimum for 
ΔVS > 0, ΔOS > 0  
(upper right quadrant) 

constant for 
all ΔVS, ΔOS 

SV-all 
 
 

τ𝑂𝑂 = 0 
τ𝑆𝑆, τ𝑉𝑉 > 0 

minimum for 
ΔVS = 0, ΔOS > 0 
(positive ΔOS axis) 

minimum area  
for ΔVS < 0 
(left half-plane) 
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Fig. 12. Predicted RT patterns under S-only and SV-all response models, shown for the RT measures 
RT_first_[SVO] and RT_[S]. 
 

For the S-only model, where response initiation only requires processing of S, we can see that the 
prediction is that RT_first_[SVO] is minimal and constant for (a1) ΔVS>0, ΔOS>0 (the upper right quadrant), 
decreases linearly with ΔOS in (a2), and decreases linearly with ΔVS in (a3). The reason that RT_first_[SVO] 
varies in regions (a2) and (a3) is that the S stimulus is not in the first stimulus set in these regions. In 
contrast, the S-only model predicts constant RT_[S] over Δ-space: response initiation is a constant offset 
from the time of the S stimulus in this model, and the dependent measure RT_[S] is defined as the reaction 
time relative to the S stimulus.  

For the SV-all response model, where response initiation requires processing of both S and V, we see 
that RT_first_[SVO] has a minimum value for orderings {SVO} and {SV}{O}, in which S and V are members 
of the first stimset. This corresponds to the positive ΔOS axis, labeled (b1). In the upper half plane (b2), 
the model-predicted RT_first_[SVO] increases linearly with the absolute value of ΔVS; in the lower half 
(b3) it increases in a more complicated way, depending on the distance and direction from the origin. In 
contrast, the SV-both model predicts constant RT_[S] in region (c1), the left half plane (ΔVS<0), and a 
linear increase with ΔVS in region (c2), the right half plane. Note that the predicted patterns under both 
models are somewhat simpler for the measure RT_[S] than for RT_first_[SVO]. 

Another way to illustrate the predicted effects of S-only and SV-all models is to plot them as surfaces, 
as in Fig. 13 below. These more clearly show the fjord-like structure of SV-both model predictions for 
RT_first_[SVO].  
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Fig. 13. Predicted RT surfaces under S-only and SV-all response models, shown for the RT measures 
RT_first_[SVO] and RT_[S]. 
 
Results 
 
The results of Exp. 1 are more consistent with the SV-both model than the S-only model. Although RT 
depends strongly on S, it also depends on ΔVS and to a lesser extent on ΔOS. Mean RT_first_[SVO] and 
RT_[S] for each timing pattern are shown in Fig. 14. The colored intervals are ±2 standard error intervals. 
For purposes of exposition, argument orders are grouped as follows:  
 

{S}0: simultaneous (blue) 
{S}1: S in first stimset, excluding simultaneous (orange) 
{S}2: S in second stimset (yellow) 
{S}3: S in third stimset (purple) 

 
When comparing RT_first_[SVO] and RT_[S], the groupings illustrate how the timing of S has a strong 

influence on RT. By definition, RT_first_[SVO] and RT_[S] are identical for the {S}0 and {S}1 groups. This is 
because the reference times for RT_first_[SVO] and RT_[S] are the same for all of the stimulus orderings 
in these groups. The key contrast is evident when comparing {S}2 and {S}3 groups: the spread of mean 
values of RT_first_[SVO] is much higher for these groups than it is for values of RT_[S]. This is not 
surprising, given the importance of S for response initiation. It also reinforces why choosing a low variance, 
low entropy RT measure (such as RT_[S]) is useful: we can more clearly see the effects of the relative 
timing of stimuli.  
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Fig. 14. RT measures by stimuli order and ISI. Left: RT_first_[SVO], 0 is time of first stimulus. Right: RT_[S], 
0 is time of S. Vertical line is RT in simultaneous condition {SVO}. Stimulus orders are arranged vertically. 
Within each order, ISIs 100, 200, and 300 ms (circles, squares, triangles) are arranged from top to bottom. 
 

Despite the strong dependence of response initiation on S timing, the response times are not 
consistent with an S-only model of initiation: delays of O or V relative to S delay mean response initiation, 
and early V and O facilitate response initiation. The patterns are also not consistent with a model in which 
S, V, and O are equally important for response initiation. We pursue further elaborations of these 
observations below.  
 
Response initiation stimulus contingency 
Is there evidence that any stimuli are absolutely required for response initiation? The S stimulus is indeed 
absolutely required: as we show below, no responses precede the S, and no responses occur before a 
reasonable estimate of when the speaker can be aware of S. Here we assume that a category-specific 
awareness of a visual stimulus is possible no sooner than 150 ms after the stimulus (Vanrullen & Thorpe, 
2001), and so if a response is initiated earlier than 150 ms after a stimulus, it entails that it was initiated 
without category-specific processing of that stimulus. Also consider that the early left anterior negativity 
(ELAN)—an EEG/MEG signal that may reflect word-category related processing—peaks around 200 ms 
after a stimulus. Indeed, the shortest RT_S in Experiment 1 was 240 ms (see Fig. 15), which suggests a 
lower bound on the timecourse of processes that occur between the S stimulus and generation of acoustic 
energy associated with the S. 
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Regarding response initiation contingency on V and O, the data are more equivocal: on one hand, 
there are no timing patterns in which the mean response time precedes V or O stimuli, and delays of V 
and O relative to S tend to result in delays of mean response initiation times. On the other hand, there 
are timing patterns in which some proportion of responses were initiated before the participant could 
obtain a category-specific processing of the identity of V or O (i.e. pre-V and pre-O responses).  

To illustrate the above, Fig. 15 shows distributions of RT_[S], RT_[V], and RT_[O]. The overall 
percentages of pre-V and pre-O responses were 2.0% and 4.2%, respectively. There were no pre-S 
responses. Given that the response initiation involves an unknown motor initiation delay, and that 150 
ms is merely the minimum time required for stimulus awareness—(and does not necessarily include 
association/organization processes)—it is reasonable to infer that the percentages of trials initiated 
without fully organized V or O systems is higher than the percentages based on the distributions.   
   

 
Fig. 15. Distributions of RT relative to stimuli. Vertical red line is the earliest possible time of category-
specific awareness of the stimulus.  

  
Furthermore, when the percentages of pre-V and pre-O responses are examined by condition (Fig. 

16), we see that pre-V and pre-O responses are more frequent with large ΔVS and ΔOS. For example, in 
{S}{O}{V}/300, where ΔVS=600 ms, the response occurs before V awareness is possible on 22.7% of trials; 
in {S}{V}{O}/300, where ΔOS=600 ms, the response was initiated before O awareness on 60.2% of trials.  
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Fig. 16. Percentages of responses initiated before earliest awareness of V and O stimuli by timing pattern. 
 
V and O stimulus delays induce response initiation delays 
On average, delays of V and O relative to S result in longer RT_S, which suggests that the processes 
underlying response initiation typically involve organization of V and O systems. Looking within the {S}1 
group (Fig. 17), we can see several interesting patterns. Consider that both {SV}{O} and {SO}{V} orderings 
induce delays relative to {SVO}; yet the effect of ISI is stronger for {SO}{V} than for {SV}{O}—this suggests 
that V tends to be more influential for the initiation criterion than O: delay of V induces a greater increase 
of RT than delay of O. This is supported by the observation that the ISI effect in {S}{VO}, where both V and 
O are delayed, is quite similar to the effect in {SO}{V}. Similarly, notice that the ISI effect is greater for 
{S}{O}{V} than for {S}{V}{O}—this again follows from a greater role of V than O in response initiation.  
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Fig. 17. RT_[S] for ordering group {S}1, where S is in the first stimset. Group {S}0 is included for comparison. 
Filled areas are confidence intervals for the mean. Stimulus times are depicted for each timing pattern. 
 
Response initiation is facilitated when V and O stimuli precede S 
Examining RT_[S] patterns in the {S}2 and {S}3 groups sheds further light on the relative influences of V and 
O. Observe in Fig. 18 that when V precedes S (orderings {VO}{S} and {V}{SO}), there is a slight facilitation 
such that RT_[S] is faster. This facilitation is also present when only O precedes S (order {O}{SV}), although 
not quite as large. In addition, consider that the orderings {O}{S}{V} and {V}{S}{O} exhibit facilitation.  
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Fig. 18. RT_[S] for ordering groups {S}2 and {S}3, where S is in the 2nd or 3rd stimset. Group {S}0 is included 
for comparison. Filled areas are confidence intervals for the mean. Stimulus times are depicted for each 
timing pattern. 
 
Linear mixed effects models show ΔVS is more influential than ΔOS  
The fixed effects coefficients of a mixed effects linear model of RT_[S] are shown in Table 8. This model 
considers only a subset of conditions in which ΔVS and ΔOS are orthogonal, which avoids the adverse 
effects of predictor collinearity. Note that a ΔVS-ΔOS interaction is included here, although this term does 
not significantly improve the fit. 
 

Table 8. Fixed effect coefficient estimates 
Name Estimate SE tStat pValue 
(Intercept) 0.523 0.018 29.5 < 0.001 
ΔVS 0.222 0.017 13.2 < 0.001 
ΔOS 0.105 0.016 6.6 < 0.001 
ΔVS:ΔOS -0.029 0.059 -0.5 = 0.63 

            
The main fixed coefficient estimates of the model can be interpreted as follows. The intercept is about 

523 ms and is the model-predicted RT_[S] when all stimuli are simultaneous, i.e. {SVO}. Note that this 
differs from the grand mean of the data because it does not include random effects for subjects. The 
coefficients of ΔOS and ΔVS are the effects of delays of O and V relative to S. For example, in {V}{O}{S} 
order with an ISI of 300 ms, ΔVS = -0.600 s, and ΔOS = -0.300 s. These values are shown in the “predictors” 
columns in Error! Reference source not found. for three timing patterns: {SVO}, {V}{O}{S}/300, and 
{S}{V}{O}/300. The predicted effects on RT_[S] associated with each predictor are shown in the “effects” 
columns. For {V}{O}{S}, the combined effect of the predictors (not including the intercept) is -0.135 s. In 
other words, the model predicts that participants respond about 135 ms faster in the {V}{O}{S}/300 ms 
timing pattern than in {SVO}. Conversely, for {S}{V}{O}/300, the combined effect of the predictors is a 159 
ms delay of RT_[S] relative to {SVO}.  
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Table 9. Examples of interpretation of fixed effect coefficients. 
  {SVO} {V}{O}{S}/300 {S}{V}{O}/300 
 coeffs. pred. effects pred. effects pred. effects 
Intercept 0.523 1 0.523 1.000 0.523 1.000 0.523 
ΔVS 0.222 0  -0.300 -0.067 0.600 0.133 
ΔOS 0.105 0  -0.600 -0.063 0.300 0.031 
ΔVS:ΔOS -0.029 0  0.180 -0.005 0.180 -0.005 
Sum of predictor effects   0  -0.135  0.159 
Predicted RT   0.523  0.388  0.682 

 
Notice that the coefficient of ΔVS is substantially larger than the coefficient of ΔOS: 0.222 vs. 0.105. 

This means that in the linear regression model, the timing of V relative to S is twice as influential on RT as 
the timing of O relative to S. This is consistent with our visual interpretations of the RT patterns above. To 
interpret the interaction term, we have to consider the units. The main fixed effect coefficients are in 
dimensionless units (proportional effects), whereas the interaction coefficients are in units of 1/s, because 
the predictors for these terms are in units of s2. Thus the interaction coefficient cannot be directly 
compared to the main effect coefficients. Examining the effects of the interaction for the {V}{O}{S} and 
{S}{O}{V} conditions, we see that these are fairly small, about 5 ms. This value is also the largest predicted 
effect of the interaction for any condition, because the largest magnitude of this predictor value for 
ΔOS:ΔVS is ±0.180 s2. Given the relatively small impact of the ΔOS:ΔVS interaction and its marginal 
significance, it is reasonable to focus our attention on the coefficients of a main-effects only model, in 
shown Table 10: 

 
Table 10. Linear regression coefficients 
of model without interaction 
Name Estimate SE tStat pValue 
(Intercept) 0.524 0.017 30.0 < 0.001 
dVS 0.222 0.017 13.2 < 0.001 
dOS 0.100 0.012 8.2 < 0.001 

 
To better understand ΔVS and ΔOS effects, we visualize RT_[S] and linear and nonlinear model fits in 

Δ-space in Fig. 19. The nonlinear model includes ΔVS2 and ΔOS2 terms. The mean values for each timing 
pattern are represented by colors in Fig. 19A. The fixed effects of linear and nonlinear mixed effect models 
of RT with orthogonal predictors are shown in the heatmaps of panels (B)-(E). Notice that RT grows with 
both ΔVS and ΔOS in the linear model fit, but does so more quickly with ΔVS. This is because the coefficient 
of ΔVS is greater: 0.222 vs. 0.100. Fig. 19C shows the fixed effects predictions with the model intercept 
subtracted. This is equivalent to showing the difference between the model prediction and the predictions 
of an S-only model, because the intercept represents the mean value of the {SVO} condition (after random 
effects have been accounted for), and the S-only strategy predicts a constant surface in RT_[S] in Δ-space 
(see Fig. 13). Hence the positive (red) regions in Fig. 19C are Δ-values for which the model predicts a higher 
RT_[S] than the S-only strategy, and the negative (blue) regions are those where the model predicts a 
lower RT_[S].  
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Fig. 19. RT_[S] for experiment 1 in Δ-space, along with linear and nonlinear model fits.  
 

If we take the linear and nonlinear fits as decent approximations of the empirical data, the heatmaps 
show that RT_[S] is slower than predicted by the S-only model for large values of ΔVS and ΔOS (upper 
right quadrant), and faster than predicted for negative ΔVS and ΔOS (lower right quadrant). The quadratic 
terms of the nonlinear model (see Table 11 below) further indicate that the influence of ΔVS is stronger 
than ΔOS: the coefficient of the ΔVS2 term is more than three times greater than the coefficient of the 
ΔOS2 term. (Although note that the quadratic term coefficients are in units of 1/s.) Comparisons of mean 
absolute error (MAE) and Akaike information criteria (AIC) indicate that the nonlinear model provides a 
better fit, taking into consideration that it has more parameters.   

 
Table 11. Coefficients of linear and nonlinear models 
Model MAE AIC Intercept ΔVS ΔOS ΔVS2 ΔOS2 
linear 0.066 -9297 0.524 0.222 0.100   
nonlinear 0.064 -9452 0.507 0.223 0.105 0.395 0.116 

 
Inspecting the model errors by timing pattern (Fig. 20), observe that the linear model underestimates 

RT_[S] at extremal values of ΔVS, i.e. ΔVS = ±600 ms. The quadratic term of the nonlinear model corrects 
for these underestimates.  
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Fig. 20. Linear and nonlinear model errors by timing pattern.  
 

There are two important phenomena which are apparent from the regressions analyses above. First, 
we see evidence of late V delay: response initiation is delayed substantially when the V stimulus occurs 
after S; to a lesser extent this is the case for O as well. Second, there is evidence of early V and O 
facilitation: V and O stimuli which occur before S are associated with lower RT_[S] than in the {SVO} 
pattern. This is illustrated by the location of the minimum in the nonlinear model heatmap in Fig. 19: the 
minimum value is located at large negative values of ΔVS and ΔOS, where the V and O stimuli precede S 
by a substantial amount.  
 
Response initiation model 
 
As an alternative to regression modeling, we analyze the performance of the dynamical models of 
response initiation under various parameter constraints. This analysis-by-synthesis approach shows that 
category-specific thresholds and interference are useful for understanding how stimulus timing influences 
response initiation. Furthermore, model optimizations suggest that interference effects are asymmetric, 
with S interfering with V and O to a greater extent than V or O interfere with S. Below we show the mean 
absolute error (MAE) of both the dynamical models and regression models, but it is important to keep in 
mind that these models cannot be directly compared: likelihood- and parameter penalization-based 
approaches to comparing models (such as AIC or BIC) cannot be applied to the dynamical models. Also, 
the parameters of the dynamical model are bounded in ways that the parameters of regression model are 
not. Ultimately, the dynamical models are much more appealing as analysis tools because they have a 
richer structure and a more limited predictive capacity than the regression models; we are particularly 
interested in what their optimized parameter values can tell us about the mechanisms responsible for 
organizing and initiating the response. 

The dynamical models were optimized to fit the mean response initiation time for each timing pattern 
in Exp. 1, after subtraction of participant-specific intercepts (see Appendix: Model optimization for further 
detail). The linear regression model had fixed effects of ΔVS, ΔOS, and their interaction; the nonlinear 
regression model had fixed effects of fixed effects of ΔVS, ΔOS, ΔVS2, and ΔOS2; the dependent variable 
for the regression models was RT_[S] with participant-specific intercepts subtracted. The mean absolute 
errors of the models are shown in Table 12:  
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Table 12. Model error comparison 
model MAE # params 
τ3_g1_C0 0.0324 4 
τ3_g3_C0 0.0324 6 
linear 0.0192 4 
nonlinear 0.0110 5 
τ3_g1_C6 0.0102 10 
τ3_g3_C6 0.0100 12 

 
Not surprisingly, the models without interactions have relatively large errors. The linear regression, 

which has just four free parameters, exhibits lower error than the specific-thresholds and growth-rates 
model without interactions (τ3_g1_C0). The dynamical models with interactions slightly outperform the 
regression models. Unexpectedly, the models with category-specific growth rates do not substantially 
outperform their counterparts with uniform growth rates, despite having two additional parameters. This 
suggests that we can focus our attention on models with a uniform growth rate. 
 

 
Fig. 21. Graphical depiction of parameters of optimized dynamical models. Left: diagonal lines show 
system activation growth for {SVO} ordering in the absence of interactions. Values of thresholds and 
growth parameters are labeled. Right: coupling interaction strengths for the model with interactions.  
 

The parameter values of the dynamical models inform our conceptual understanding of how |S|, |V|, 
and |O| system states might interact and evolve over time. The parameters of models with uniform g and 
specific τ with interactions (i.e. τ3_g1_C6) and without interactions (i.e. τ3_g1_C0) are graphically 
illustrated in Fig. 21. The threshold values and growth rates are labeled in both panels. Note that a fixed 
motor initiation delay of 50 ms was imposed. The diagonal lines represent system activation growth for 
{SVO} ordering in the absence of interactions. Coupling strength parameters for the model with 
interactions (τ3_g1_C6)  are shown on the right of the figure. 

First, notice that in both models, the category-specific thresholds follow the order τS > τV > τO. This is 
consistent with the empirical observations that response initiation is contingent on the S stimulus and  
depends more strongly on ΔVS than ΔOS. Second, notice that adding interference results in an increase in 
the growth rate, along with changes in the thresholds: τS and τV decrease, τO increases, relative to the 
model without interactions. Third, the strongest interference interactions are |SO| = -2.0 and |SV| 
= 1.3. This suggests that the process of organizing/preparing the |S| delays the organization/preparation 
of |O| and |V|, to a greater extent than vice versa. 
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The effects of including interference in the model can be better understood by comparing the model 
predictions and errors. Model-generated RT_[S] and errors relative to empirical means are shown in Δ-
space Fig. 22. The model generated RTs are shown as heatmaps with equal-RT contour lines. The model 
without interactions can generate linear increases in RT_[S] in particular regions of Δ-space where ΔVS or 
ΔOS is large (these are determined by g and the relative values of τS and τV); outside of these regions the 
model can only generate constant RT_[S]. In other words, without interactions, the dynamical model 
predicts that in most timing patterns, early V and O will have no effect on response initiation since their 
thresholds are lower than the threshold for S.  

The model with interactions generates more complicated, nonlinear variation in RT_[S] over Δ-space. 
The reason, which we examine below, is primarily that growth of V and O systems is slowed when the 
corresponding stimuli occur in the temporal vicinity of the S stimulus. The reductions of error in Δ-space 
that are obtained with interference are difficult to describe in a simple way. One clear difference is that 
error in the region of ΔVS, ΔOS < 0 is greatly reduced: without interactions the dynamical model 
overestimates RT values in this region. 
 

 
Fig. 22. Error by timing pattern for dynamical models with and without interactions. Top panels: heatmaps 
of model-generated RT with contour lines. Bottom: model errors for the timing patterns in Exp. 1; errors 
are indicated by colors. 
 

To gain a better intuition for how the specific-τ model with interactions generates more accurate RTs, 
we examine the system activation time series for various stimulus timing patterns below. Fig. 23 shows 
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system activations for {SVO} and the two timing patterns which represent extremal RT_[S]: {V}{O}{S}/300 
and {S}{O}{V}/300. The simulations are aligned to the time of the S stimulus. In interpreting the activation 
time series, we distinguish between the intrinsic growth rate of a given system and the effective growth 
rate of that system: effective growth rate can vary over time and depends on both intrinsic growth and 
system interactions. Note that we refer to model systems between vertical bars, i.e. “the |S| system”, 
and we refer to stimuli with the bare letter, i.e. “the S stimulus”. 

First, compare in Fig. 23 {SVO} and {V}{O}{S}/300 (maximally early V). Observe that the time for |V| 
and |O| to reach their thresholds is much longer in the {SVO} pattern than in the {V}{O}{S} pattern. This 
is because of interference exerted by |S| on |V| and |O|. The interference effects of |V| and |O| on |S| 
are smaller but not negligible. The last system to reach threshold in the {SVO} case is |O|, although all 
three systems achieve their thresholds around the same time. Overall, the interference effects delay RT 
in the {SVO} pattern compared to {V}{O}{S}. This is how the model generates the phenomenon of early V 
and O facilitation. 

 Next, compare {SVO} and {S}{O}{V}/300 (maximally delayed V). In {S}{O}{V}, the last system to reach 
threshold is |V|, simply because V comes late. Interference effects do not play a large role here, because 
|S| has already reached a high level of activation. In general, the effects of delayed V are larger than those 
of delayed O because |V| has a higher threshold than |O|. 
 

 
Fig. 23. Model simulations for {SVO} and for the patterns with extremal mean RT_[S]: {V}{O}{S}/300 and 
{S}{V}{O}/300.  
 

Fig. 24 shows simulations for timing patterns where ΔOS = 0 and ΔVS varies. Note that panels are 
sorted by ΔVS from left to right and top to bottom. The fastest model-generated RT_[S] occurs when V 
precedes {SO} by 300 ms (A). Because |V| reaches threshold before |S| or |O| becomes active, it does 
not experience any interference; |O| does experience some interference from |S|, but the effects of this 
on RT are minor because τO is low. Note that (A-C) show how the model generates early V facilitation. In 
contrast, the late V delay pattern is generated in (E-G). Late V delay arises mostly because the V occurs 
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late and therefore |V| reaches threshold later: |V| is the last system to reach threshold in all of the 
patterns where ΔVS>0.  
 

 
Fig. 24. Model simulations for timing patterns where ΔOS=0. 
 

The optimized model thus generates early V/O facilitation and late V delay (see Fig. 2). Late V delay is 
generated straightforwardly from delays the timing of V, which delays the time of threshold achievement. 
The late V delay effect is larger than the late O effect because τV > τO. Early V/O facilitation is also generated 
by the model, but the way it accomplishes this is not necessarily what one would expect: rather than 
arising from a facilitatory mechanism, the early RTs arise from the absence of an inhibitory effect: when 
V or O stimuli occur early enough, |V| and |O| can reach threshold before |S| can interfere strongly with 
them. The effect of the absence of interference on |V| is more consequential than the effect of the 
absence of interference on |O|, because τV > τO and because the interference exerted by |S| on |V| is 
greater than the interference exerted by |S| on |O|. 
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Experiments 2 and 3 Reaction times 
 
Predictions 
Experiments 2 and 3 were designed to obtain more accurate estimates of the effects of stimulus timing 
on response initiation time for three specific orderings: {SV}{O}, {SO}{V}, and {S}{VO}. These are the lines 
in the shaded regions of the Exp. 1 design in Fig. 25. By testing a finer grid of inter-stimulus intervals (ISIs), 
Exp. 2 allows for more a precise characterization the shape of the functions that relate RT to ΔVS and ΔOS. 
Note that {SVO} order is a limiting case of the non-synchronous orderings as ISI → 0.  
 

 
Fig. 25. Comparison of Δ-space sampling of Experiments 1-3 
 

Consider the {SV}{O}/25 timing pattern (indicated by an arrow in the Exp. 2 panel of Fig. 25). In this 
condition the O stimulus appears approximately 25 ms after the {SV} stimulus set. Due to lack of precise 
control over the timing of graphics objects updates relative to screen refreshes, the actual ISIs can deviate 
up to ±8.3 ms �= 1

2
× 1

60𝐻𝐻𝐻𝐻
� from the target ISI (see Methods for derivation of this). Psychometric studies 

have shown that the minimal ISI for correct detection of asynchronous order of visual stimuli is 20-40 ms 
(Hirsh & Sherrick Jr, 1961; Pöppel, 1997). Furthermore, it has been argued that sensory stimuli that co-
occur in a temporal window of approximately 30 ms are integrated differently from stimuli with a larger 
ISI (Pöppel, 1997). This suggests that many of the asynchronous stimuli sets in the 25 ms ISI condition 
might not be perceived as asynchronous. Indeed, the psychometric threshold for visual asynchrony 
detection is typically calculated with relatively simple, non-linguistic stimuli, and since our stimuli are 
more complex, we might allow for a somewhat larger window of integration; on the other hand, the set 
of possible stimuli is small and this might reduce the asynchrony detection window. In any case, if visual 
asynchrony is a relevant factor, we would predict that for ISIs under a small threshold (such as 25 ms), 
there should be no effect of ISI on RT. 

The dynamical model obtained from optimization of Exp. 1 data predicts a relatively constant relation 
between ISI and RT for a range of short, positive ISIs  (predicted RT functions are illustrated later in Fig. 
29). The source of this predicted effect is a trade-off between the inhibitory effects of interference 
between systems and the facilitatory effects of earlier stimuli. Specifically, when V or O occur 
simultaneously with S, a processing delay arises because of interference that |V| and |O| experience from 
|S|; however, this processing delay is counteracted by a facilitatory effect of allowing |V| and |O| 
activations to begin grow earlier in time.  The predicted consequence of this is that there is a range of 
short ISIs in which RT_[S] is relatively insensitive to variation in ISI. We refer to this hypothesis as the 
interference-parallelization trade-off. 
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 For subsequent comparison, the relevant RT patterns from Exp. 1 are shown in Fig. 26. The figure 
shows spline fits of RT_[S] from Exp. 1, after participant-specific intercepts have been removed. Note that 
the shortest ISI investigated in Exp. 1 was 100 ms, so the visual asynchrony effect cannot be assessed in 
this experiment. However, it is noteworthy that there are nonlinear relations between RT and ISI which 
have different forms for different orderings. For {SV}{O}, where ISI = ΔOS (orange line), there is a concave 
nonlinearity; for {SO}{V}, where ISI = ΔVS (blue line), there is convex relation. In other words, the RT effect 
of O delay is less than linear, while the RT effect of V delay is greater than linear. For {S}{VO} (yellow line), 
where increasing ISI entails both V and O delay, the ISI effects are less than additive. 
 

 
Fig. 26. Experiment 1 ISI effects on RT_[S] for {SO}{V}, {SV}{O}, and {S}{VO} orderings. 
 

Another difference between experiments involves uncertainty in the ordering and timing of stimuli. 
We hypothesize that less uncertainty in when and where stimuli occur facilitates visual processing and 
possibly also response organization processes. Hence Both Exps. 2 and 3 are predicted to exhibit faster 
RTs than Exp. 1, because there is less uncertainty regarding the ordering of stimuli in Exps. 2/3, due to the 
smaller set of possible orderings.  

Furthermore, this hypothesis predicts that RTs in Exp. 3 should be faster than in Exp. 2 because there 
is less uncertainty in Exp. 3 regarding the timing and ordering of stimuli. Exp. 3 differed from Exp. 2 in that 
the timing patterns were separated by blocks. The blocking of timing patterns was designed to optimize 
participant performance for the shortest ISIs. The blocks were ordered such that the four orderings—
{SVO}, {SV}{O}, {SO}{V}, and {S}{VO}—occurred in that order, and ISI decreased over the experiment 
(excepting in the recurring synchronous {SVO} condition). The block numbers are labeled for each ISI in 
Fig. 25, except for the recurring {SVO} blocks, which were block numbers 1, 5, 9, …, 25. Hence the first 
block was {SVO}, blocks two through four corresponded to each of the three orderings with a 300 ms ISI, 
the fifth block was {SVO}, blocks six through eight were the three orderings with a 200 ms ISI, the ninth 
block was {SVO}, etc. The blocking design removes uncertainty about the timing and ordering of stimuli. 
The purpose of decreasing ISI in non-synchronous blocks over the session was to allow the participant to 
gradually adapt to faster ISIs over the course of the session. (Note that there was likely some uncertainty 
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in the initial several trials of each block in Exp. 3, since participants were not explicitly informed of the 
timing pattern changes from block to block). Note that in all experiments there is the same amount of 
uncertainty regarding the lexical instantiation of the syntactic categories—the same sets of lexical items 
in the same proportions were used.  
 
To summarize, the following hypotheses are tested in Exps. 2 and 3: 
 

(i) Visual asynchrony threshold hypothesis: there is a minimum absolute value of ISI below which 
effects of stimulus asynchrony are not observed. This range is expected to be ±25 ms, on the basis of 
psychometric studies. 
 
(ii) Interference-parallelization tradeoff hypothesis: there is a period of short ISIs in which the adverse 
effects of interference are counteracted by the facilitatory effects of organizing systems in parallel, 
resulting in a relative insensitivity of RT to ISI. This hypothesis predicts that RT will be relatively 
constant over a range of short ISIs. Based on the Exp. 1 optimized model, this range should be larger 
than the visual asynchrony threshold range. There should be a range of ISIs over which stimulus timing 
has no effect or minimal effect on RT.  
 
(iii) Uncertainty hypothesis: uncertainty in the ordering and timing of stimuli slows response 
preparation. This hypothesis predicts that less uncertainty (or, greater predictability) in stimulus 
timing patterns will be associated with faster RTs. Both Exp. 2 and Exp. 3 have less uncertainty than 
Exp. 1, and thus speakers in Exp. 2 and 3 will on average exhibit faster RTs than in Exp. 1. Furthermore, 
Exp. 3 has less uncertainty than Exp. 2, and thus RTs will be faster on average in Exp. 3 than Exp. 2. 

 
Results 
 
RTs for Exps. 2 and 3 provide support for all three of the above hypotheses. First we examine Exp. 2 RTs, 
which are shown in Fig. 27. The upper left panel of the figure shows smoothing spline fits of the mean 
RT_[S] and 95% confidence intervals for each ordering in Exp. 2. The other panels show the same spline 
fits separately for each ordering, along with the means and 95% confidence intervals of RT_[S] for each 
ISI from Exps. 1 and 2.  

The visual asynchrony threshold hypothesis was supported by Exp. 2: the mean RT at 25 ms ISI for all 
three asynchronous orderings did not differ significantly from the mean RT for {SVO} ordering.  

The interference-parallelization tradeoff hypothesis was also supported: all three orderings have a 
range of ISIs in which RT is relatively insensitive to change in ISI. These insensitivity ranges are indicated 
by horizontal braces above which the mean RT over the range is shown. For {SV}{O} and {S}{VO}, the 
insensitivity range is 50-150 ms; for {SO}{V} the range is 50-125 ms. The mean values in these ranges are 
approximately the same for the asynchronous-SV and asynchronous-SO conditions (about 510 ms), and 
are about 20 ms higher than the RT for {SVO} order. In contrast, the value when both V and O are 
asynchronous (i.e. {S}{VO}) is about 35 ms higher than the synchronous order. These patterns suggest that 
the cost of O and V delays in the insensitivity range are about the same, and are close to additive.  

The uncertainty hypothesis was supported by Exp. 2 as well: RTs were faster in Exp. 2 than in Exp. 1 
RTs. Note that these differences between the experiments increase with ISI. Mean RTs are nearly the same 
for {SVO}, but differ by about 50 ms for {SO}{V}/300 ms.  
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Fig. 27. Experiment 2 ISI effects on RT_[S]. Top left panel: smoothing spline fits for all three orderings with 
95% confidence intervals. Other panels: smoothing spline fits for each ordering, with Exp. 1 means shown 
for comparison.  
 

Exp. 2 replicates the Exp. 1 finding that response preparation depends more strongly on V timing than 
on O timing. The functions relating ISI and RT have similar shapes in Exps. 1 and 2; specifically, for {SV}{O} 
ordering the function is relatively flat, while for the {SO}{V} and {S}{VO} orders the functions are convex, 
i.e. exhibit a greater-than-linear increase of RT with ISI. The observation that ISI has a smaller effect for O 
delay than for V delay supports a model in which response initiation depends more strongly |V| 
organization than on |O| organization.  
 A potentially interesting trend shown in Fig. 27 is that RT for {SV}{O}/25 is faster than for {SVO}. The 
value at 25 ms is indicated by an arrow in the figure. This decrease is somewhat unexpected, since this ISI 
is within the hypothesized visual integration window. However, a post-hoc t-test of the difference did not 
find it significant (p=0.25, (t=1.15,df=218.7), diff=0.006, 95% c.i.=[-0.004, 0.016]).  
 

The uncertainty hypothesis was further supported by RTs from Exp. 3, which are shown in Fig. 28, 
along with patterns from Exps. 1 and 2. RT_[S] was much lower in Exp. 3 than in Exp. 1 or 2. This effect 
appears to diminish for large ISIs (≥ 300 ms), but recall that in Exp. 3 block order is a confounding factor: 
RTs are relatively high for large ISIs because those blocks were performed earlier in the experiment, when 
participants were still learning to achieve optimal performance in the task. Note also that mean RT_[S] for 
the {SVO} ordering was calculated only from the last two {SVO} blocks of the session, in order to get an 
estimate of RT when the participant is most adept at the task. 

In comparing Exp. 2 and 3 RT_[S] for ISIs below 300 ms, there is a fairly constant difference of 
approximately 50 ms. This indicates that there is a quite large effect of uncertainty about when the V and 
O stimuli will appear relative to S: when the timing of V and S stimuli is predictable, participants can initiate 
the response about 50 ms faster than when they are uncertain about stimulus timing. An interpretation 
of this in model terms is that participants may adjust their category-specific thresholds to minimize the 
time required for response preparation: for example, if it is known that the V will occur a specific period 
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of time subsequent to the S, the participant can adopt a lower τS and initiate the response earlier, without 
risking a loss of fluency. 
 Evidence in support of the interference-parallelization tradeoff hypothesis was also observed in Exp. 
3: ranges of insensitivity in RT to variation in ISI were again observed. However, the exact ranges and 
offsets differed from those of Exp. 2. Specifically, in the {S}{VO} condition, the insensitivity range is lower 
and smaller, from 25 to 75 ms, and the RTs do not differ substantially from {SVO}. The same is mostly the 
case for the other two orderings.  
 

 
Fig. 28. Experiment 3 ISI effects on RT_[S]. Top left panel: smoothing spline fits for all three orderings with 
95% confidence intervals. Other panels: smoothing spline fits for each ordering, with Exp. 1 means and 
Exp. 2 spline fits shown for comparison. 
 

The visual asynchrony threshold hypothesis was partly supported by Exp. 3: the mean RT at 25 ms ISI 
for two of the three orderings ({SO}{V} and {S}{VO}) did not differ significantly from the mean RT for {SVO}. 
However, as in Exp. 2, Exp. 3 shows an unexpected response facilitation at 25 ms in the {SV}{O} condition. 
A post-hoc t-test showed that mean RT_[S] for {SV}{O}/25 and {SVO} are significantly different (p<0.02, 
(t=2.49,df=734.8), diff=0.009, 95% c.i.=[0.002, 0.016]. The effect is fairly small (9 ms), but the fact that it 
was observed in both Exps. 2 and 3, suggests that it may be attributable to mechanisms of response 
preparation, rather than stochastic variation. Moreover, the effect is clearer in Exp. 3, where stimulus 
timing is less uncertain.  
 
Response initiation model 
 
Here we examine how models which are optimized to fit data for Exp. 1 and Exp. 2 differ. The models have 
the same parameters structure, i.e. specific thresholds and interaction parameters, but their parameter 
values are different, because they were optimized to generate mean response initiation times for Exp. 1 
and Exp. 2, respectively. Fig. 29 compares the model-generated RT patterns for the three orderings of Exp. 
2. One clear difference in the model-generated RT functions is that for {SV}{O} and {SO}{V} orderings, the 
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Exp. 2 model (solid lines) is relatively insensitive to ISI variation below some particular ISI value. This value 
is much higher for {SV}{O} ordering than for {SO}{V}. In contrast, the Exp. 1 model exhibits a complex form 
of ISI dependence for all orderings, which results in a nonmonotonic relation between ISI and RT. Note 
that the Exp. 2 model does not generate early V and O facilitation effects. The models have the same 
relative values of threshold parameters, and the two strongest interference interactions (|S||O|,|V|) 
are the same. The main differences in the Exp. 2 model parameters relative to the Exp. 1 model 
parameters are: (i) slightly higher growth rate and (ii) much higher τS. In addition, |S||O| interference 
is about 20% weaker, |O||V| interference is twice as strong, and |O| nor |V| interference with |S| is 
negligible. 
 

 
Fig. 29. Comparison of Exp.1 and Exp. 2 models. Top left: model parameters. Other panels show predicted 
RT_[S] for each ordering, for models optimized on data from Exp. 1 (gray dotted lines) and Exp. 2 (solid 
lines); also shown are means and 95% confidence intervals of RT_[S] from Exp. 1 (gray circles) and Exp. 2 
(squares).  
 

On a qualitative assessment, both models are somewhat unsatisfactory, but for different reasons. 
Observe that the Exp. 1 model generates an RT bump around ISI = 0 ms. Because of this, its predictions 
for {SVO} ordering and for short ISIs are too large. This bump is a consequence of relatively strong 
|S||O| interference and a relatively low threshold for |S|. In contrast, the Exp. 2 model is unsatisfactory 
because it does not generate early V/O facilitation. This is not surprising, given that the Exp. 2 model is 
not optimized on data where any stimuli precede S. 
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Response analyses 
 
Here we analyze some additional aspects of the response, specifically word duration and response errors. 
Note that square brackets are used to refer to the production of a word associated with a given syntactic 
category, i.e. [S] refers to productions of the word form associated with the S stimulus. 
 
Word duration 
The only substantial effect of stimulus timing on word duration is that [S] duration increases with ΔVS and 
ΔOS. Word durations from each experiment are shown in Fig. 30. The scales in all panels of the figure have 
the same range (about 65 ms), but differ in their offsets. Thus the relative differences between colors in 
the figure have the same meaning across panels, despite the fact that [S], [V], and [O] have different 
average durations. Note that Exp. 3 has durational effects that are most likely attributable to block order, 
rather than stimulus timing.  
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Fig. 30. Word durations in Exps. 1-3. The scales in all panels of the figure have the same range (about 65 
ms), but differ in their offsets. Note that the experiments probe different values in Δ-space and Exp. 3 
has effects that are attributable to block order. 
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Fig. 31. Spline fits of ISI effects on word durations of each syntactic category, for all three experiments. 
Blue lines: ΔOS, orange lines: ΔVS. 
 

When we compare ISI effects across experiments (Fig. 31), one notable difference is that [V] durations 
and to a lesser extent [O] durations are longer in Exp. 2 than Exp. 1. Specifically, [V] durations are about 
15 ms longer in Exp. 2 than in Exp. 1. One possible explanation for this is that by eliminating uncertainty 
in the timing of S stimuli, Exp. 2 drew more attention to V and O stimuli, and this had the effect of 
increasing the corresponding word durations. This explanation requires a mechanism whereby attention 
to stimuli increases the corresponding production duration. An alternative possibility is that Exp. 2 
participants happened to speak more slowly than Exp. 1 participants, but this is not consistent with the 
similarity in durations of [S].  

For Exp. 3, word durations for small ISIs are shorter for all three syntactic categories than in Exps. 1 or 
2. This is consistent with the explanation proposed above: with no uncertainty about stimulus timing, 
word durations are shorter. However, Exp. 3 conflated block order with ISI, and this could account for why 
Exp. 3 durations increase with ISI. 

Another interesting pattern is a subtle difference between effects of Δ measures on [S] duration in 
Exps. 1 and 2. Observe that [S] duration increases for large ΔVS (orange lines) but not for large ΔOS (blue 
lines); this difference may arise because speakers slow down [S] production to buy time for the processing 
of the V stimulus or the motor preparation of [V]. This is an interesting effect because it suggests that the 
timecourse of [S] production can be modulated by the state of the |V|. 

Word durations which are abnormally long can be interpreted as a form of hesitation, and it makes 
sense that the most substantial effects on duration are observed in [S] for large ΔVS: when V is delayed 
the speaker may have initiated [S] production without being prepared to produce [V]. The occurrence of 
silent pauses—another form of hesitation—might also reflect this scenario. However, silent pauses were 
quite infrequent in the absence of a response error. The percentages and counts on non-error trials of 
silent pauses between S and V and between V and O are shown in Table 13. 
 

Table 13. Silent pause rates 
 S-V V-O 
Exp. 1 0.17% 12/7199 0.21% 15/7199 
Exp. 2 0.14% 10/7378 0.03% 2/7378 
Exp. 3 0.04% 4/9358 0.09% 8/9358 
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Response errors 
 
Response errors in the experiments are important because they show how the simplified dynamical model 
is insufficient, and therefore provide guidance on how the model should be elaborated. The analysis here 
is focused on the lexical and syntactic aspects of errors, rather than the detection or repair of errors. To 
that end, we adopt the following classification and terminology:  
 
Lexical substitution errors: these are errors in which the wrong lexical item is produced, i.e. a source item 
substitutes for the target item. 268 lexical substitution errors were identified across experiments. These 
can also be described as overt errors because the identity of the source is evident in the utterance. Lexical 
substitution errors are subclassified as internal or external depending on whether the source is or is not 
part of the target sentence. For example: 
 
 Internal lexical substitution error: “Mo-(Moe) Lee saw Moe”  TARGET: Lee saw Moe 
 

Note that “Mo-(Moe)” indicates that this pronunciation of Moe was cut off before completion; 
the parenthetical specifies the inferred word form. Cutoff disfluencies are very common when 
lexical errors are repaired, and in general, speakers usually detect and repair such errors. 
Nonetheless, there are some cases in which lexical errors are not repaired. Internal substitutions 
can be classified according to the syntactic categories of the source and target items. Here the 
source is O and the target S. To represent this we use the abbreviation: SO. 
 

External lexical substitution error:  “Ray saw Moe”     TARGET: Lee saw Moe 
 

In this example, the source item (Ray) is not part of (i.e. is external to) the target sentence. This 
variety of lexical substitution is less frequent than internal substitutions for noun targets. Note 
that all lexical substitutions of V are necessarily external, because there is only one V target in 
each sentence. 

 
Lexical substitutions are the most frequent types of errors, and the analyses below focus primarily on 

these errors. Notably, it does not seem to be the case that an S or O was substituted for a V, or vice-versa. 
In other words, substitutions never involved words of different lexical categories (i.e. NOUN and VERB). 
There was one instance of an error in which the first word produced was the V: “hear-(heard) SIL Ray 
heard Moe” for the target utterance Ray heard Moe. This could be analyzed as lexical substitution of V for 
S, but alternatively it can be analyzed as a failure to select S, which was subsequently repaired.  
 
Covert errors: these occur when a participant produces a correct form/forms, and then hesitates and/or 
repeats that form/forms. Often there is a silent pause between the initial productions and repetitions, 
and sometimes the initial production may be cutoff. Such errors may arise from difficulty in preparing an 
upcoming form, or could reflect uncertainty regarding the stimulus, or could arise from an errorful plan 
detected by an internal monitor. There were 24 cases of covert errors in which a form/forms were 
repeated; disfluent responses in which there were filled pauses or hesitations without repetition may also 
be covert errors. 
 
Blends: these are errors in which a form that is produced combines articulatory  gestures associated with 
two different lexical items. For example, in the sentence Lee saw Moe, a speaker might produce the target 
subject Lee as [mi:], combining the onset of the target object, [m], and the vowel of the target subject, 
[i:]. An error was only labeled as a blend if the form was clearly identifiable as the combination of two 
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forms. 25 blends were identified across the experiments, although some pronunciation errors may also 
be blends. All but two blends involved targets of the same syntactic category. Blends could be interpreted 
as mechanistically related to internal lexical errors, but it is ambiguous whether they arise from errorful 
selection of lexical items or errorful selection of articulatory gestures.  
  
Other errors: various other types of errors occurred but are not analyzed here because they are too 
infrequent or not suitable for analysis. These include trials where the participant failed to respond, word 
mispronunciations (which were not interpretable as blends), and the presence of filled pauses or non-
speech vocalizations (i.e. coughs, yawns). 
 

The lexical substitution error percentages and counts by experiment are shown in Table 14. The rates 
were around 1% in all experiments and did not differ significantly between experiments (p = 0.102, χ2(2) 
= 4.6). The lexical error counts by class are shown in Table 15, along with percentages. V substitutions 
were the most common lexical substitution, accounting for about half of all substitution errors. All lexical 
V errors are external by definition, because there is only one V in each sentence. The next most common 
class of lexical substitutions were internal SO errors, where the object was produced in place of the 
subject. External substitutions for S occurred somewhat less frequently. In contrast, for substitutions of 
target O, there were more external than internal sources (34 vs. 11). Of the 11 internal substitutions for 
O, 10 of these were “exchange” or “transposition” errors (SO) where the target O also served as an 
internal source of substitution for the target S. There was only one case where a S that was correctly 
produced was repeated in place of the target O.  

The asymmetry in the S and O substitution error subclasses can be reasonably interpreted as a 
predominance of anticipatory errors over perseveratory errors. More usefully, this asymmetry can be 
understood to follow from a tendency for participants not to substitute a previously produced form for a 
target form, in combination with a propensity to substitute one argument in the target sentence for 
another (i.e. internal substitution). 
 

Table 14. Lexical substitution  
error rates by experiment 
   
Exp. 1 0.8% 60/7293 
Exp. 2 1.1% 82/7497 
Exp. 3 1.1% 101/8802 

 

Table 15. Substitution error 
subclass counts and percentages  
   
external V 113 51.6% 
internal S<--O 39 17.8% 
external O 34 15.5% 
external S 22 10.0% 
internal S<-->O 10 4.6% 
internal S-->O 1 0.5% 

 
 

Table 16. Error subclass proportions 
by experiment 
 Exp. 1 Exp. 2 Exp. 3 
external O 0.13 0.17 0.16 
external S 0.08 0.10 0.11 
external V 0.56 0.60 0.43 
internal S<-->O 0.02 0.04 0.07 
internal S<--O 0.21 0.09 0.24 

 

Table 17. Lexical substitutions 
by lexical source and target 
  SOURCE 
  Lee Moe Ray saw heard 
TARGET Lee  17 23   
 Moe 7  17   
 Ray 29 9    
 saw     22 
 heard    95  
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Examination of the distribution of error classes by experiment (Table 16) did not reveal strong 
asymmetries. A contingency analysis conducted after excluding the sole SO error did not find a 
significant interaction between experiment and error type (χ2(8) = 10.2, p = 0.25).  

There were asymmetries in the lexical identities of the sources and targets of substitutions. These are 
shown in Table 17. The target Ray was more frequently substituted with Lee than with Moe, and to a 
lesser extent Lee was more frequently substituted with Ray than with Moe. This could be due to the 
greater degree of similarity between the initial consonants /l/ and /r/ than between /l/ or /r/ and /m/. 
Another somewhat more puzzling asymmetry was that target heard was substituted with saw much more 
frequently than the reverse. 
 To assess whether substitution error likelihood was influenced by Δ-values, logistic regressions of 
error likelihood as a function of ΔVS and ΔOS were conducted for each of three most frequent substitution 
error subclasses, for each experiment separately. In all three experiments, the only error subclass for 
which Δ terms were significant predictors were external V errors (Exp. 1: χ2(2) = 13.06, p < 0.001; Exp. 2: 
χ2(2) = 91.33, p < 0.001; Exp. 3: χ2(2) = 16.49, p < 0.001). In all of these cases, increases in ΔVS increased 
the likelihood of a substitution for V.  
 The occurrence of lexical substitution errors, and in particular the syntactic category asymmetries 
between internal and external sources of these errors, are important phenomena because they place 
strong requirements on an adequate model of response initiation and production. The simplified 
dynamical models considered above do not generate lexical substitution errors. Hence error phenomena 
indicate that major extensions to the model are necessary. Specifically, the simplified models do not have 
an explicit conceptual-syntactic association mechanism, nor do they have an error detection mechanism. 
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Discussion and conclusion 
 
Summary of main findings 
 
The main findings of the experiments are listed below and summarized in Fig. 32.  
 
(i) Greater sensitivity to V delay than O delay. The timing of V relative to S is generally more influential 
than the timing of O relative to S. This is particularly evident for ΔVS or ΔOS > 100 ms. The regression 
analyses conducted in preceding sections also support this conclusion: ΔVS coefficients had greater 
magnitudes than ΔOS coefficients in both linear and nonlinear regressions of Exp. 1. The simplified 
dynamical model is able to capture this difference via a higher initiation threshold for V than for O. 
 
(ii) Region of relative insensitivity: response initiation is relatively insensitive to the timing of V and O 
stimuli relative to S for asynchronies in the range of -125 to 125 ms. This is illustrated in Fig. 32 as shallower 
slopes of the lines connecting mean RTs in Exps. 2 and 3. It was also manifested in the quadratic terms of 
the nonlinear regression of Exp. 1. The model is able to capture this as follows. For ΔVS<0 and ΔOS<0 in 
this range, the advantage of activating |V| and |O| systems earlier (i.e. in parallel with |S|) is 
counteracted by the interference effects they experience from |S|.  
 
(iii) Early V and O facilitation. For large negative ΔOS and ΔVS in Exp. 1—and particularly with ΔVS = -300 
ms, there is a facilitatory effect on response preparation, such that RT_[S] is nearly 40 ms faster in {V}{SO} 
than in {SVO} of Exp. 1. The model generates this effect via the reduction of interference effects of |S| on 
|V| and |O|. 
 
(iv) Stimulus timing uncertainty effect. Uncertainty in stimulus timing leads to longer response initiation 
times. In Exp. 1, there were 13 unique orderings and 37 unique timing patterns which could occur on each 
trial. In Exp. 2, there were 4 unique orderings and 31 unique timing patterns. In Exp. 3, there was 1 unique 
timing pattern in a given block of trials. The relative entropies of ordering and timing pattern across 
experiments are correlated with the relative RTs of the experiments. The simplified model has no 
mechanism for generating these effects.  
 
(v) The 25 ms anomaly: object-delay facilitation. When the O stimulus occurred approximately 25 ms after 
S, response initiation was facilitated. This effect was fairly small—on the order of 10 ms—and was only 
significant in a post-hoc test in Exp. 3. Our simplified dynamical models do not predict this anomaly.  
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Fig. 32. Summary of main findings. 
 
Evidence for syntactic categories? 
Do the experimental findings support the idea that there are “syntactic” categories of S, V, and O, as 
opposed to generic ordering categories of first word, second word, and third word (i.e. W1, W2, and W3)? 
It is logically possible that the RT patterns are not specific to the categories S, V, and O, but rather, are 
simply attributable to the order in which the words are produced. For instance, consider that ΔVS was 
found to be more influential than ΔOS on RT_[S]. This could be alternatively interpreted to mean that the 
timing of W2 relative to W1 (Δ21) was more influential than the timing of W3 relative to W1 (Δ31). Indeed, 
it is not easy to identify any particular RT pattern that cannot be viewed in this way.  

To address this question, a control experiment could be conducted in which a list of three words is 
produced which does not constitute a sentence and does not contain verbs. Replacing the verbs with two 
names (e.g. Will, Ned) would be a sensible approach, as this would maintain the same informational 
content of the stimuli. These alternative names would be exclusive with one another and would always 
appear second in the list. 

One potential source of evidence in favor of the syntactic interpretation is an interaction between 
category and stimulus timing uncertainty. Specifically, consider the comparison of Δ effects between 
experiments in Fig. 33. The Δ-RT relations are plotted without intercepts on the right of the figure. The 
coefficients of nonlinear regressions of the form RT = 1 + Δ + Δ2 are shown for each subset. Participant-
specific ISI effects were residualized, and only ISIs less than or equal to 200 ms are included, to avoid the 
influence of the block order confound of Exp. 3. The cases in which the nonlinear terms are significant 
(p<0.05) are indicated with an asterisk. Notice that the coefficients of the nonlinear term are positive for 
regression by ΔVS and negative for regression by ΔOS. This means that delay of V is associated with a 
larger than linear increase in RT, while delay of O induces a smaller than linear increase in RT. This contrast 
does not seem to gel with the notion that it is word order rather than syntactic identity that drives RT 
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patterns. If word order were the sole influence on RT we would have no reason to expect that the signs 
of the nonlinear coefficients would differ between W2 and W3. On the contrary, something else beyond 
word order seems necessary to account for the difference. 
 

 
Fig. 33. Comparison of ISI effects by predictor (ΔOS or ΔVS), for all three experiments. Left: intercepts 
included. Right: intercepts removed. 
 

Furthermore, it is evident that the both the relative influences of the linear and nonlinear terms differ 
across experiments and by Δ-measures: the nonlinearity of the ΔVS effect becomes more influential as 
uncertainty regarding stimulus timing is reduced, while the both the linear and nonlinear ΔOS effects 
become less influential as uncertainty is reduced. This difference is somewhat puzzling: why does 
uncertainty reduction affect V and O stimulus timing effects in qualitatively different ways? Because our 
dynamical model does not draw explicit connections between uncertainty and model parameters, it does 
not offer much help in reasoning about such patterns. 
 
Information production/entropy analysis 
To assess the role of uncertainty (i.e. entropy) and information production in RT patterns, we must 
consider the timecourse of information produced by the observation of the stimuli. Recall that we refer 
to a set of simultaneous stimuli as a stimset, and we will represent the first, second, and third stimsets as 
{}1, {}2, and {}3, respectively. Here we distinguish between several different types of information: lexical 
information, spatial information, and temporal information: 
 
Lexical information: information about the identities of the lexical items of the stimuli: {Lee, Moe, Ray, 
saw, heard}. There are 𝑁𝑁 =  3 × 2 × 2 = 12 different combinations, which are equally probable (𝑝𝑝 = 1

𝑁𝑁
). 

The lexical entropy in bits for equiprobable alternatives is defined simply as −∑ 𝑝𝑝𝑖𝑖 log2(𝑝𝑝𝑖𝑖)𝑖𝑖 =
− log2 �

1
𝑁𝑁
�. Recall that V ∈ {saw, heard}, and S,O = N ∈ {Lee, Moe, Ray}, with the constraint that S≠O. The 

total lexical entropy before the first stimset is thus 3.585 bits for all experiments.  
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As stimuli appear, the lexical entropy decreases. The rate of entropy reduction (i.e. information 
production) differs by timing pattern and differs on average across experiments. As shown in Table 18, 
more lexical information is produced on average by {}1 in Exp. 2 than in Exp. 1. This is because the S always 
appears in {}1 in Exp. 2. Accordingly, there is on average more lexical uncertainty remaining after {}1 in Exp. 
1 than in Exp. 2 (column H1). Furthermore, slightly more information is produced on average by {}2 in Exp. 
2, and no uncertainty remains after {}2 in Exp. 2 (column H2). Note that the averages of information 
production are calculated only over those timing patterns in which a stimset occurs, and the averages of 
remaining entropy are calculated only over timing patterns in which there is any remaining lexical 
uncertainty—this is why the entropy remaining after a stimset does not equal the entropy before that 
stimset minus the information produced. For Exp. 3 the information production and remaining entropy 
depend on the stimulus ordering of a given block and hence are not statistically stationary on intermediate 
timescales. 
 

Table 18. Average lexical entropy (H) and  
information production by stimset 
Exp. H0 {}1 H1 {}2 H2 {}3 
1 3.58 1.83 1.90 1.40 1.00 1.00 
2 3.58 2.58 1.33 1.33 0 n/a 
3 {SVO}: 3.58 3.58     
3 {SO}{V},{SV}{O}: 3.58 2.58 1.00    
3 {S}: 3.58 1.58 2.00    

 
Spatial information: what will be the spatial arrangement of information in view of the participant after a 
stimset appears? For {}1 in Exp. 1 there are 6 possibilities: {SVO}, {SV}, {SO}, {S}, {V}, {O}, and for Exp. 2 
there are 4 possibilities: {SVO}, {SV}, {SO}, {S}. As shown in Table 19, the initial spatial entropy is greater 
for Exp. 1 than Exp. 2 (column H0), but more information is produced on average by {}1 in Exp. 2 than in 
Exp. 1. In fact, in Exp. 2, there are always 2 bits of spatial information produced by {}1, and there is never 
any remaining uncertainty in the spatial arrangement of {}2. There is no spatial uncertainty remaining here 
because the spatial arrangement of {}2 is fully determined by {}1 in Exp. 2. Note that {SVO} is not equally 
probable with asynchronous orderings in either experiment, with p({SVO}) = 0.077 and p({SVO}) = 0.25, in 
Exps. 1 and 2, respectively. For timing patterns with two or three stimsets in Exp. 1, {}2 produces 
information. Exp. 3 never produces spatial information, because there is no uncertainty about the spatial 
arrangement of information due to the blocking of timing patterns.  

 
Table 19. Average spatial entropy and  
information production by stimset 
Exp. H0 {}1 H1 {}2 H2 {}3 
1 2.60 0.87 1.88 1.88 0 0 
2 2.00 2.00 0 0 n/a n/a 
3 0 0 0 0   

 
Temporal information: what will be the interval of time between stimuli (ISI)? In Exp. 1 there are four 
possibilities: [0, 100, 200, 300 ms]; in Exp. 2 there are 10 possibilities: [0, 25, 50, 75, 100, 125, 150, 200, 
300, 400 ms]; recall that in both cases these are not equiprobable. The first stimset always resolves some 
uncertainty because it informs the participant whether the ISI is zero or non-zero; the entropy reduction 
(information production) associated with {}1 is greater in Exp. 2 than in Exp. 1, because the set of 
possibilities is larger (although the larger probability of {SVO} actually decreases the entropy reduction of 
{}1 somewhat in Exp. 2). In Exp. 2, the average temporal entropy is larger after {}1 (column H1) than it is 
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before {}1 (column H0), because the averages are calculated only over timing patterns where there exists 
a second stimset (this restriction makes sense if we interpret the guaranteed non-occurrence of a stimset 
as a non-event, i.e. one does not “observe” a non-event, especially given that there is no chance that 
some event will occur). In that case, in Exp. 2, consider that although after {}1 the set of possible ISIs has 
decreased, the probabilities of the remaining ISIs are much more uniform (and in fact equiprobable)—this 
accounts for the slight increase in entropy (column H1 > H0). Once again, Exp. 3 produces no temporal 
information, because the blocking of timing patterns eliminates temporal uncertainty. 

 
Table 20. Average temporal entropy and  
information production by stimset 
Exp. H0 {}1 H1 {}2 H2 {}3 
1 1.85 0.39 1.58 1.58 0 0 
2 3.30 0.81 3.32 3.32 n/a n/a 
3 0 0 0 0   

 
It is important to consider that the above analyses assume an observer with exact knowledge of event 

probabilities. Human participants, on the other hand, do not have this knowledge. Let us assume that 
participants develop estimates of probabilities for the lexical, spatial, and temporal properties of stimuli, 
based upon relative frequencies they experience over the course of the experiment. For Exps. 1 and 2, 
these estimates will necessarily be biased early on in a session, because participants have not been 
exposed to the full set of timing patterns and lexical items. They may also develop estimates that are 
biased toward properties of recent exemplars as opposed to estimates that reflect the full distribution of 
properties experienced up to a given point in an experiment.  

Even if the estimate is an exact reflection of the current distribution, it is important to note that the 
relative frequencies of stimulus properties rarely exactly match their probabilities. For lexical information, 
the normalized frequency distribution approaches these probabilities more closely as the experiment 
progresses. For temporal and spatial information, the distribution exactly matches the probabilities at the 
end of each block (in Exps. 1 and 2), and within blocks, the deviations between the normalized frequency 
distribution and the probabilities becomes smaller over the course of the session.  

In addition, for Exp. 3 the initial several trials of each block may in fact contain some temporal and 
spatial uncertainty, even though we have stated above that there is no such uncertainty. The reason for 
this is that participants may require a trial or two to recognize that there is a new timing pattern.  

Despite the above issues, we will assume that, at least after the first block of trials (which are excluded 
in most of the preceding analyses), the expectations of human participants are close to those of an ideal 
observer with exact knowledge of probabilities; in that case, the information calculations above are still 
useful for reasoning about differences between experiments. 

Now we examine the timecourse of lexical information production in more detail, in order to calculate 
a rate of information production. Fig. 34 shows time courses of the lexical entropy for all 37 unique 
stimulus timing patterns in Exp. 1 (many of the lines overlap). Information is produced whenever entropy 
(H) is reduced, so the information production events shown in the bottom panel correspond to reductions 
of entropy. As illustrated in the figure, the lexical information produced by the first stimulus (at time 0) 
takes one of four values. If the stimulus is {SVO}, then the lexical entropy drops to 0 and 3.585 bits of 
information are produced. If only the V stimulus appears, then the number of possible word sequences is 
reduced to N/2, and hence the entropy is reduced by 1.0—in other words, the V stimulus provides 1 bit 
of information. If the first stimset is either {S} or {O} (i.e. {N}), then the number of possible lexical 
sequences is reduced to N/3, so the stimset provides 1.585 bits of information; at this point, the remaining 
entropy is 2 bits because there are two possible V stimuli and two possible N stimuli. If any two stimuli 
appear (i.e. {XX}), then there is just one bit of entropy remaining. 
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Fig. 34. Lexical entropy time-course in Exp. 1, along with information production and information 
production rate for each timing pattern. 
 

Thus, the information produced by a single S or O (i.e. N) stimulus depends upon whether another N 
stimulus has already appeared. If it is the first N stimulus, then the entropy reduction/information 
produced is −𝑙𝑙𝑙𝑙𝑙𝑙2 �

1
3
� = 1.585 bits. If it is the second N stimulus, then the lexical information produced 

is only 1 bit, because there are only two possible N items available (this is because one of the three has 
already been used for the first N stimulus). The information rate for a given stimulus timing pattern is 
defined here as the ratio of information produced to a period of time in which the entropy is non-zero. 
Here the period of time is defined to extend from 100 ms before the first stimset to the time of the last 
stimset. Note that it is necessary to select an arbitrary starting time of this period that is prior to the first 
stimset, otherwise the information rate for the {SVO} pattern would be undefined. Thus the maximal 
information rate is 3.585 bits / 100 ms = 35.85 bits/s.  

As illustrated in Fig. 34, there are six unique information rates in Exp. 1, and all but one of them is 
associated with a unique combination of the number of stimsets and ISI. Specifically, the third highest rate 
(11.9 bits/s) is common to timing patterns which have three stimsets at a 100 ms ISI or two stimsets at a 
200 ms ISI. This shows that the relative information rates between timing patterns correspond to the time 
of the last stimset. The same relation holds for the average lexical information rate of timing patterns in 
Exp. 2, shown in Fig. 35.  

Differences in the average lexical information rate (i.e. lexical information rate averaged over all 
timing patterns) could be implicated in between-experiment differences in RT. The average lexical 
information rate in Exp. 1 (12.5 bits/s) was less than the average information rate in Exp. 2 (20.9 bits/s). 
Perhaps a higher average information rate leads participants to adopt processing/preparation strategies 
that allow lexical information to  be processed more quickly. This could account for the faster RTs in Exp. 
2 than in Exp. 1. 
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Fig. 35. Lexical entropy time-course in Exp. 2, along with information production and information 
production rate for each timing pattern. 
 

However, there is reason to doubt that lexical information rate is an important factor in RT patterns. 
As shown in Table 21, for Exp. 1 the lexical information rate is not nearly as good a linear predictor of 
RT_[S] as either of the Δ measures; nor is it as good as tS for RT_first. In contrast, for Exps. 2 and 3 (where 
RT_[S]=RT_first), the lexical information rate is nearly as predictive as ΔVS, having comparable R2 values. 
However, this may simply be attributable to the fact that information rate is more closely related to ISI in 
Exps. 2 and 3. In Exp. 1, where three-stimset/100 ms patterns and two-stimset/200 ms patterns have the 
same information rate, we see a weaker predictive value of information rate. 
 

Table 21. Comparison of information rate, ISI, and Δ-measures as predictors 
Exp1. Exp. 2 Exp. 3 

 RT_[S] RT_first 
predictor R2 AIC R2 AIC 
ΔVS 0.51 -9116 0.24 -4624 
ΔOS 0.41 -8238 0.30 -5064 
tS 0.37 -7959 0.59 -7959 
ISI 0.27 -7254 0.43 -6245 
rate_I 0.27 -7231 0.41 -6113 

 

 
predictor R2 AIC 
ΔVS 0.64 -8483 
ISI 0.63 -8369 
rate_I 0.61 -8211 
ΔOS 0.59 -8023 

 

 
predictor R2 AIC 
ISI 0.55 -14182 
ΔVS 0.52 -14134 
rate_I 0.50 -13814 
ΔOS 0.44 -13449 

 

  
What effects on RT might we expect of informational differences between experiments? The 

differences between experiments are summarized in Table 22. For exposition we refer to table rows (a)-
(j). In general, it could be hypothesized that when there is more uncertainty, the processing of the stimuli 
is more difficult, and thus RT should be longer. This prediction is consistent with the empirical differences 
for lexical uncertainty after {}1 (b), spatial uncertainty before {}1 (e), and spatial uncertainty after {}1 (g). 
The prediction is not consistent with differences in temporal uncertainty before and after {}1 (h,j), where 
Exp. 2 has more temporal uncertainty than Exp. 1. This could suggest that spatial and/or lexical uncertainty 
is more influential than temporal uncertainty.  
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Table 22. Comparison of experiments with respect to information production and entropy 

  Exp. 1 Exp. 2 Exp. 3 matches 
empirical 

(a) {}1 lexical information produced 2 > 1 * y 
(b) H1 lexical uncertainty remaining after {}1 1 > 2 * y 
(c) {}2 lexical information produced 1 > 2 * n 
(d) Average lexical information rate 2 > 1 * y 
(e) H0 spatial uncertainty before {}1 1 > 2 * y 
(f) {}1 spatial information produced 2 > 1 = 0 y 
(g) H1 spatial uncertainty after {}1 1 > 2 = 0 y 
(h) H0 temporal uncertainty before {}1 2 > 1 = 0 n 
(i) {}1 temporal information produced 2 > 1 = 0 y 
(j) H1 temporal uncertainty after {}1 2 > 1 = 0 n 
 *depends on block  

 
An alternative hypothesis specific to temporal information is that greater temporal uncertainty 

facilitates stimulus processing. Requiring participants to process stimuli in a larger region of timing space 
might promote more rapid stimulus integration—perhaps more attention is devoted to predicting stimset 
timing. In that case, the empirical patterns are consistent with the greater degree of temporal uncertainty 
in Exp. 2 than in Exp. 1.  

Another sensible hypothesis is that when more information is produced by a stimset, the response 
can be prepared more quickly, and so RTs should be faster when more information is produced earlier on. 
This prediction is consistent with the lexical, spatial, and temporal information produced by {}1 (a, f, i), but 
not the lexical information produced by {}2 (c), where Exp. 1 produces slightly more information on 
average than Exp. 2. The average lexical information rate is also higher for Exp. 2 than Exp. 1, consistent 
with the hypothesis that greater information production facilitates response preparation. 

An alternative hypothesis is that, when more information is produced by a stimset, it is more difficult 
to process that information, in which case RT should be slower. This is not consistent with the empirical 
differences between Exp. 1 and 2 for {}1 (a, f, i). It could be argued that because Exp. 3 produces no spatial 
or temporal information and has the shortest RTs, it provides support for the hypothesis that more 
information is more difficult to process. However, it is worth considering that on a larger timescale, Exp. 
3 provides the spatial and temporal information at the beginning of each block. 

Why are RTs much faster in Exp. 3 than Exp. 2? Possibly it is because Exp. 3 has no spatial or temporal 
uncertainty. Consider that the average lexical information produced by {}1 Exp. 3 varies by block. For {SVO} 
blocks in Exp. 3 there is more information produced by {}1 than the average information for Exp. 2; for 
{SV} and {SO} blocks it is the same amount of information produced; for {S} blocks there is less information 
produced by {}1 in Exp. 3 than the Exp. 2 average. Despite this variation across blocks, Exp. 3 RTs are faster 
for all of the orderings (excluding the early blocks for which practice effects are a confound). This could 
suggest that the lexical information typically produced by the first stimulus does not have as large of an 
effect on response preparation as uncertainty regarding the spatial arrangement of the first stimset (or 
relatedly, how much spatial information is produced by {}1).  

To summarize, it seems likely (i) that lexical and/or spatial uncertainty have greater slowing effects 
than temporal uncertainty; (ii) that spatial uncertainty has greater effects than lexical uncertainty; and 
(iii) that earlier information production (or greater information production rate) facilitates response 
preparation. It is also possible that temporal uncertainty actually facilitates stimulus processing, perhaps 
by encouraging participants to shift attention more rapidly after stimuli. The relative importance of spatial 
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uncertainty over temporal uncertainty might be explained by the dynamics of gaze control, which we 
consider next. 
 
Speculations on gaze control 
Future studies could benefit from analysis of gaze dynamics during experimental trials. Here we will 
speculate on where participants might be looking during the experiment, and raise a variety of questions 
regarding how gaze may be controlled to facilitate information processing.  

A preliminary question is whether participants need to saccade during the stimulus presentation. It is 
logically possible that participants are able to process all stimuli para-foveally from a central gaze location 
without needing to saccade. Studies of visual attention/processing have found that the spatial dimensions 
of the window in which information can be processed can vary with task (LaBerge, 1983; Ludwig et al., 
2014) and may range from 0.5° to 2°. Here participants generally sat approximately 0.75 to 1.25 m from 
the stimulus monitor, which was a 19 inch (0.48 m) monitor with horizontal and vertical dimensions of 
(0.34 m). The horizontal offsets of the centers of the S and O stimuli were 10% of horizontal screen width, 
which is 0.034 m. Thus the visual angle between S and O was between 2 tan−1(0.034/1.25) = 3.1∘ and 
2 tan−1(0.034/0.75) = 5.2∘. This suggests that it may be necessary, or at least advantageous, to saccade 
from one location to another to process information. However, the size of the window may be larger if 
the relevant para-foveal information is easy to distinguish, so the necessity of a saccade in the current 
contexts remains unclear. Nonetheless, impressionistic observation of the participants during pilot studies 
indicates that eye movements do occur during stimulus presentation, and so we will subsequently assume 
that participants are in fact controlling eye movements, whether it is necessary or not. 
 A second question is what are the most effective gaze control strategies, when it comes to minimizing 
RT. Participants are probably not randomly directing gaze, and there is most likely some correlation 
between the time-course of gaze and the timing pattern of stimuli. First we consider the gaze location 
prior to the first stimset; note that we refer to the locations of stimuli as <S>, <V>, and <O>, to distinguish 
locations from the stimuli themselves. Several different strategies seem sensible here. One strategy (<S>-
first) is to direct gaze to <S> before the first stimset. This might be an effective strategy because the 
initiation of the response depends on knowledge of the lexical identity of S, and therefore places a hard 
constraint on response initiation. By initially locating gaze on <S>, the participant avoids the need to 
saccade to <S> should the S appear. An alternative strategy (central fixation) is to direct gaze to the 
location of the fixation cross <+>, which is in the center of the stimuli triangle. The central fixation strategy 
minimizes the (angular) distance of the saccade to any particular stimulus location. Yet another strategy 
might be to direct the gaze to a location that is between stimuli locations, such as halfway between <S> 
and <V>. If the gaze location is close enough to <S> and <V> that either stimulus can be processed without 
a second saccade, then this might be preferable to either the <S>-first or central fixation strategies. 
 One consideration in developing hypotheses about initial gaze is that the differences between 
experiments are likely to affect gaze control strategies. For instance, in Exp. 2 where S always appears in 
the first stimset, the <S>-first strategy might be most effective; in contrast, in Exp. 1, where S only appears 
in the first stimset on 18/39 = 46.2% of trials, central fixation might be more effective. In Exp. 3 where the 
timing and location of all stimuli is known in advance, a strategy that locates initial gaze between stimuli 
might be most effective. 
 A third question is the extent to which saccades subsequent to the initial fixation are influenced by 
the timing/ordering of stimuli. It is logically possible that there is no influence: for example, participants 
might cyclically saccade through locations and only process lexical information when a stimulus is present. 
However, this would not be a very effective strategy. Another logical possibility is that saccades occur in 
a fixed order but are entirely contingent on stimulus processing. For example, in an <S>-first strategy, 
participants might wait until S appears before saccading to <V> (regardless of whether V was visible), then 
wait for V (if necessary), then once V is processed, saccade to <O>. This strategy would likely be suboptimal 
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for timing patterns in which V or O precedes S by a substantial amount of time. Indeed, the early V/O 
facilitation effect suggests that participants do not adopt this approach, because such an approach 
predicts no difference between {V}{O}{S} and {SVO} orderings.  
 A more optimal strategy for gaze control would be one in which gaze control is governed both by a 
predictive model of stimuli and a model of the relative importance of the stimuli for response initiation. 
For example, on a {V}{O}{S}/300 trial in Exp. 1, imagine that initial gaze is on <S> (because of its relative 
importance), but when O appears the participant saccades to <O> and processes O. Subsequently, the 
participant saccades back to <S>, because S is more important than V. However, V appears and this 
induces a saccade to <V> and processing of V. This is followed by a saccade to <S> because it is predictable 
with 100% certainty that S will appear there shortly. Now consider a {VO}{S}/300 trial, again with initial 
gaze on <S>. Here the participant saccades after the first stimset to <V> and then to <O>, and then to back 
to <S>. In both cases, the control of gaze is driven both by stimuli appearance, but also by anticipation of 
where subsequent stimuli may appear and a consideration of the relative importance of the stimuli for 
response production. We must assume in these cases that participants can detect the spatial pattern of 
stimuli in their parafoveal vision—hence the participant can see that stimuli have appeared at both <V> 
and <O> locations even when their gaze is on <S>. 
 Some important considerations in developing a model of gaze control during the task are the fixation 
time required for recognition of lexical identity of stimuli and the time required for planning saccades to 
a subsequent location. Because the set of stimuli in the experiment is small and the locations of those 
stimuli are known, it is likely that fixation time required for processing stimuli is relatively small, most 
likely on the short end of reported fixation durations in reading (50-600 ms). Moreover, although saccades 
to unexpected stimuli may take from 200-300 ms to plan, in the current experiments strong expectations 
can be formed regarding the timing and location of stimuli. Hence it may be the case that saccade planning 
time is greatly reduced and/or parallelized. Perhaps a small repertoire of saccades is learned by 
participants to facilitate performance in the task. 
 Ultimately, there are many unknowns regarding gaze control in the current experiments. Obtaining 
gaze trajectories throughout the experiment is important because these can be used to help interpret RT 
patterns. It is possible that RT patterns are strongly influenced by gaze dynamics, in which case it is 
important to factor out those dynamics to determine what role, if any, syntactic organization has.  
 
A more comprehensive model 
The simplified model can be optimized to generate mean reaction times on an experiment-by-experiment 
basis with a fair degree of accuracy, but it is not sufficiently powerful in a number of ways. One 
shortcoming is the absence of mechanisms which associate lexical items with motor plans, and which 
govern the order in which motor plans are selected along with the relative timing of their execution. Such 
mechanisms are necessary to account for durational effects of ΔVS on [S], specifically the lengthened 
duration of [S] when V is delayed relative to S. They are also necessary to account for the occurrence of 
blends, where the motor actions of two distinct targets are produced together. Although blends are 
somewhat rare, they occur frequently enough that they should not be ignored; they show that selection 
of motor plans is not simply a mapping from selected lexical items to articulatory gestures. A more 
comprehensive model should include mechanisms of motor sequencing and coordination (see Tilsen 
(2019) for ideas on how such blends and other articulatory errors might arise).  

Another shortcoming of the simple model is the absence of mechanisms for detecting and repairing 
errors. Hesitation, repetition, and cutoff disfluencies are common in association with error patterns; this 
indicates that a more comprehensive model should include self-monitoring mechanisms which can lead 
to various repairs. The simplified model also does not generate effects of spatial-temporal uncertainty: 
differences in RT between experiments are not predicted. Such effects may be due to between-
experiment differences in the strategies participants use to control gaze, and thus a more comprehensive 
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model would benefit from an explicit representation of gaze control, which in turn constrains when task-
relevant information becomes available. 
 The shortcoming of the model which seems most pressing to address is its inability to generate lexical 
substitution errors, and specifically the asymmetry between internal vs. external sources of S and O lexical 
substitutions: internal substitutions of S were more frequent than external ones, while external 
substitutions of O were more frequent than internal ones. The simplified model cannot generate 
substitution errors because it does not have an explicit mechanism whereby lexical items cued by the 
stimuli are associated with S, V, and O syntactic systems (or more neutrally, the 1st, 2nd, and 3rd words of 
the response). As implemented above, the model merely assumes that the correct lexical items are 
correctly associated with the three words of the response. Lexical substitution errors show that this 
assumption is incorrect, but in a way that only allows for substitutions between S and O, and not between 
V and S, or V and O.  
 Despite its many shortcomings, the simplified model does give us a way of reasoning about how the 
experimental phenomena arise. The model can generate the RT patterns which exhibit Δ-insensitivity for 
small |ΔVS| and |ΔOS|, (ii) early V/O facilitation, and (iii) late V delay. Specifically, the model holds that 
early V/O facilitation arises from an absence of interference effects, and late V delay arises from the 
dependence of the initiation criterion on the |V| system state. Δ-insensitivity arises because the 
interference and initiation-dependence effects oppose one another. The simplified model implements the 
idea from Tilsen (2019) that conceptual systems interfere with each other in the process of forming stable 
resonances with syntactic systems. In that way, the experimental findings can be interpreted as evidence 
in support of the hypothesis that response initiation can be understood as the relaxation of a system 
toward an attractor, which amounts to an increase in order and stability of the system.  

One of the key principles of this view is that the experience of meaning requires that the relevant 
conceptual systems obtain a stable, coherent state space trajectory, which is accomplished via their 
interactions with syntactic systems. The current experiments do not guarantee that participants engage 
in meaning experiences, only that they select and execute the relevant sets of articulatory gestures in the 
correct order. It seems possible that the relevant meaning experiences, if they do arise in the experiments, 
may stabilize after response initiation; all that is logically required for response initiation is stabilization of 
the conceptual-syntactic system associated with S, which is a pre-requisite for selection of S-associated 
motor plans. Nonetheless, the fact that V- and O- stimulus timing do have substantial influences on 
response initiation shows that there are interactions between the verb and the arguments; whether those 
interactions are interactions between conceptual-syntactic systems or gestural-motoric systems remains 
an open question.  

There are many potentially interesting questions that can be investigated in the current experimental 
paradigm. For one, will Δ-space RT patterns differ in languages with other word orders?  An SOV language 
like Japanese might be expected to show early O facilitation and late O delay, in which case we might 
conclude that RT patterns are driven more by sequencing mechanisms that syntactic organization; 
alternatively, if the Japanese RT patterns are similar to those observed here, it would suggest that the RT 
patterns are attributable to syntactic organization, rather than word order. Another question is whether 
RT patterns will differ from those observed when the subject and object arguments are allowed to be 
identical, i.e. Moe saw himself. It will also be helpful to investigate the effects of variation in the 
informational content of the stimuli, i.e. allowing for larger or smaller sets of lexical items for each 
syntactic role, and exploring the consequences of manipulating statistical dependencies between those 
items. Perhaps a task which elicits questions by presenting an ambiguous noun or verb stimuli may shed 
light on the organization of interrogatives. 

Finally, my hope in conducting the current experiments and in presenting the above analyses is to 
stimulate interest in experimental paradigms which investigate utterance generation (or production), as 
opposed to utterance comprehension. The vast majority of psycholinguistic/experimental syntax research 
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is focused on how speakers comprehend (i.e. parse) written or spoken language. Here our interest is in 
the conditions necessary for producing speech. Of course, the content of that speech is determined by 
external stimuli, but this is ultimately not different from what induces us to speak in everyday contexts—
we experience the world around via our sensory organs, and this sensory information can lead—more or 
less directly—to cognitive states in which we generate speech. It is also important, in studying utterance 
production, to start small: the focus here on basic SVO utterances with a sparse lexicon helps us conduct 
more powerful analyses, allowing for the detection of small effects which might be obscured with more 
complicated designs. 
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Methods 
 
Participants, task, and stimuli 
Participants were undergraduates and staff at Cornell University, Ithaca Campus. All were native speakers 
of English, with no self-reported speech or language disorders. A total of 56 speakers participated in three 
experiments (18, 18, and 20 participants in Exps. 1, 2, and 3, respectively). Data from one participant in 
Exp. 2 were excluded from all analyses because they fell asleep several times during the experiment. Data 
from one participant in Exp. 3 were excluded because the speaker appeared to intentionally produce 
incorrect responses during part of the experiment. 

Participants were seated in a chair in front of a computer monitor in a sound-attenuating booth in the 
Cornell Phonetics Lab. Prior to beginning the experiment, participants went through an instructions 
interface with the experimenter present. The experimental task was framed as speaking to an AI system, 
and the instructions placed emphasis on responding both quickly and clearly. The instructions for all three 
experiments are provided in Table 23 (Each cell of the table contains the text that appeared on a separate 
screen. Line breaks are removed to save space; bolded and italicized text appeared as such on the screen; 
numbers are added for reference): 
 

Table 23. Instructions for experiments  
(1)  
In this experiment, you will be speaking to an A.I. system. On each trial, three 
words will appear on the screen. Your task is to say a sentence with those 
words. Click "Next" to see an example. 
  

(2)  
The words will appear in a pattern such as below: 
     [image of stimulus pattern] 
The sentence that you should say in this case is: Lee saw Ray 
Click "Next" to see another example. 

(3)  
     [image of stimulus pattern] 
The sentence that you should say in this case is: Moe heard Lee 
Note that the subject of the sentence is always shown on the left, 
and the object is always shown on the right. Click "Next" to proceed. 
  

(4)  
Note that a cross appears before the words do on each trial. You should look 
at the cross at the start of every trial. Click "Practice" to practice. 

(5)  
You will be given a score on every trial of the experiment except for the first 
trial. The score ranges from 0-100 and is based on how quickly the A.I. 
system recognized the sentence that you produced. Click "Next" to proceed. 
  

(6)  
Click "Practice" to practice. You will be shown random scores for these 
practice trials only. 

(7) 
 In order for the A.I. system to correctly recognize the sentence you must 
speak clearly. But, in order to receive a high score, you must speak quickly. 
Click "Next" to proceed. 

(8)  
Whenever you get a high score, you will receive a bonus to your 
compensation. You get the bonus whenever your score is over 50, and the 
higher your score is, the larger the bonus is. Every once in a while you will be 
shown the total amount of bonus compensation that you have earned. Click 
"Next" to proceed. 
 

(9)  
Remember: To achieve high scores, you must speak both clearly and quickly. 
In order to achieve high scores, you should always begin producing the 
sentence as soon as you can, and produce the sentence quickly. The score is 
based on when you finish producing the sentence. Note that over the course 
of the experiment, it will become more difficult to achieve high scores. Click 
"Next" to proceed. 
  

(10) 
Please keep the following in mind: 
1. Never touch the microphone that you are wearing. 
2. Avoid making extra noises during the trials. 
3. Try to keep the volume of your voice at a normal level. If you speak too 
quietly the A.I. system may have difficulty recognizing the sentence. 
Click "Next" to proceed. 

(11) 
IMPORTANT: 
Try to say the sentences the same way throughout the experiment. If you 
purposefully change how you say the sentences, the A.I. system will have 
difficulty recognizing them. Do not add extra emphasis to any particular word 
in the sentence. Say the sentence in a plain manner. The experimenter will 
be monitoring your responses and will stop you if you fail to follow these 
instructions. If you make an error, try to finish saying the sentence correctly. 
If you have any questions, please ask the experimenter now. Click "Next" to 
proceed. 

(12) 
You are almost ready to start the experiment. The experiment will last for 
about 50 minutes. If something seems to go wrong during the experiment, or 
the experiment unexpectedly halts, you can let the experimenter know. 
Remember: respond quickly and speak quickly. 
Click "Next" to proceed to the experiment. 

 
Where indicated above (screens 4, 6), participants performed a set of five practice trials with 

stimuli/timing patterns that were randomly selected from the set of all stimuli/timing patterns in the 
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experiment (these differed between experiments). If participants did not produce the sentence with 
normal declarative sentence intonation, the experimenter demonstrated the desired pronunciation for 
them. 

Each trial during the experiment began with the appearance of fixation cross at the center of the 
screen, which remained visible for 750 ms until the first stimulus set appeared. Audio was recorded with 
a AKG C520 headset microphone at 22050 Hz from 500 ms prior to the first stimulus until 2000 ms after 
the last stimulus. Stimuli remained visible until the end of the recording.  

The design variables of the experiments are summarized in Table 24. The main differences between 
experiments were (i) that Exp. 1 used all 13 orderings while Exps. 2 and 3 used only the four S-first 
orderings; (ii) Exp. 1 used a smaller set of ISIs than Exps. 2 and 3; and (iii) Exp. 3 blocked timing patterns 
to eliminate spatial and temporal uncertainty in stimuli. The number of unique timing patterns in each 
experiment was different. Exp. 1 tested 37 unique timing patterns. Each block of Exp. 1 contained 39 trials, 
resulting from crossing the 3 non-zero ISIs with the 13 orderings; because {SVO} has an ISI of zero, {SVO} 
ordering was repeated three times in each block. Exp. 2 tested 31 unique timing patterns. Each block of 
Exp. 2 contained 40 trials, resulting from crossing the 10 non-zero ISIs with the 4 orderings; thus {SVO} 
ordering was repeated ten times in each block. Exp. 3 tested 19 unique timing patterns. The {SVO} pattern 
was tested in five blocks. Blocks were ordered by decreasing ISI (for non-synchronous orderings) and 
following the order: {SVO}, {SV}{O}, {SO}{V}, {S}{VO}; hence the timing patterns by block in Exp. 3 were 
{SVO}/0, {SV}{O}/300,  {SV}{O}/300,  {SV}{O}/300,  {SVO}/0, {SV}{O}/200, …, {SVO}/0, {SV}{O}/25,  
{SV}{O}/25,  {SV}{O}/25. 
 

Table 24. Comparison of experiment design variables 
 
 Experiment 1 Experiment 2 Experiment 3 
description all orderings S-first orderings, 

randomized 
S-first orderings, 
blocked timing patterns 

orderings {SVO}, 
{SV}{O}, {SO}{V}, {S}{VO} 
{VO}{S}, {V}{SO}, {O}{SV} 
{S}{V}{O}, {S}{O}{V} 
{V}{S}{O}, {V}{O}{S} 
{O}{S}{V}, {O}{V}{S} 

{SVO}, 
{SV}{O}, {SO}{V}, {S}{VO} 
 

{SVO}, 
{SV}{O}, {SO}{V}, {S}{VO} 
 
 

ISIs 0, 100, 200, 300 0, 25, 50, 75, 100, 125, 
150, 200, 250, 300, 400 

0, 25, 50, 75, 100, 200, 
300 

num. timing patterns 37 31 19 
num. trials/block 39  40 22 
num. {SVO}/block 3 10 n/a 
num. blocks/session 12 12 24 
num. trials/session 468 480 528 
num. participants 18 17 19 

 
The word forms used in the experiment were {Lee, Moe, Ray, heard, saw}. There are 3 × 2 × 2 = 12 

unique SVO sequences of these word forms, under the constraint that the O is never identical to the S. In 
Exps. 1 and 2, all word form combinations were presented once with each timing pattern, distributed 
randomly over the 12 blocks. In each block of Exp. 3, each of the 12 unique word form sequences was 
included once, along with an additional 10 selected randomly without replacement from a bag of unused 
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word form sequences. The bag was refilled with all 12 sequences whenever it was emptied, thus ensuring 
that the word form sequences were as evenly distributed as possible over the entire session.  

The noun forms {Lee, Moe, Ray} were chosen because they had simple CV forms and were comprised 
of sonorant onset consonants; because these sounds are normally voiced, estimates of response onset 
are expected to be closer in time to the initiation of articulatory gestures. Note there is unavoidably some 
delay between gestural initiation and its acoustic consequences. It was desired that the vowel and 
consonant categories of the forms differ as well, in order to diminish potential confounds from 
phonological similarity. The verb forms {heard, saw} were chosen to be monosyllabic and to have similar 
semantic qualities, both being frequent verbs of sensory perception. One reason for choosing these verbs 
is that in future versions of the experiment it is desired to cue the sentence context with visual scenes 
rather than orthographic forms. A drawback of using heard is that it has an obstruent coda, unlike saw. 
Both verbs nonetheless are heavy syllables—a short vowel-codas sequence [ɚd] in heard and the long 
vowel [a:] in saw. Past tense was used rather than present tense because the past tense seems to be a 
more natural way to describe a visual scene. 

One thing to take note of is that the ISIs specified in the experiments do not exactly correspond to 
actual ISIs of visual stimuli, because the screen only refreshes at specific intervals. To characterize the 
discrepancies that arise from this, we distinguish between CPU clock-time and screen refresh times. 
Commands to display stimuli and to begin audio recording are synchronized in CPU clock-time, and 
relatively precise synchronization of these commands can be achieved. However, the current experiments 
did not synchronize these commands with screen refreshes. The refresh rate of 60 Hz restricts changes to 
visual objects on the screen to occur at intervals of δscr = 16.667 ms. The stimuli in the experiments were 
controlled with Matlab timer objects, which operate in CPU clock time and have a precision of 1ms. The 
timers were used to issue commands to make visible pre-constructed graphics objects for the fixation 
cross and for the S, V, and O stimuli. However, since the timing of these commands relative to screen 
refresh times is not controlled, it is reasonable to expect that the actual time a stimulus becomes visible 
after issuing the command will be delayed from 0 to δscr, with the delays being uniformly distributed.  

To see the consequences of lack of synchronization of stimuli commands with screen refreshes, 
consider a series of two stimuli, stim1 and stim2, with an ISI of 25 ms. Fig. 36 shows how the actual times 
of stim1 and stim2 vary as a function of the stim1 command time, which we define relative to a periodic 
screen refresh which occurs at time 0 and multiples of 16.7 ms (i.e. 60 Hz).  
 

 
Fig. 36. Illustration of effects of screen refresh on actual ISI. 
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By subtracting the actual stim1 time from actual stim2 time, we can see that the actual ISI is either 

one or two times the screen refresh period, i.e. 16.7 or 33.3 ms, and that we should expect about equal 
numbers of both (Fig. 36, black line). Note that these are equal to the target ISI ± δscr/2. In general, 
whenever the ISI is not an integer multiple of δscr, we can expect evenly distributed actual ISIs equal to 
the target ISI ± δscr/2 (when ISI is an integer multiple of δscr, we can expect actual ISI to equal target ISI). 
Whether these deviations of the actual ISI from the target ISI are problematic is hard to know. The 
deviations are fairly small, amounting to ±8.3 ms. Moreover, since they are in opposite directions and 
evenly distributed, their effects relative to the target ISI might cancel out. However, the above analysis 
does not consider other sources of variation such as buffering of graphics object updates. In future 
experiments, it may be helpful to ensure that stimulus commands are synchronized to screen refreshes.  
 
Online response processing 
During the experiment, the acoustic recording of each trial was processed in order to give the participant 
feedback on response speed, with accuracy being taken into account. The following procedure was used. 
The absolute value of the recorded audio signal was zero-phase lowpass filtered (10 Hz cutoff, 200-point 
FIR filter). The response offset was defined as the last sample of the lowpass filtered signal above 5% of 
the maximum. The audio signal was converted to a matrix of MFCC vectors, using the following 
parameters: window 30 ms, step: 5 ms, frequency range: [300, 5000] Hz, coefficients: 18, pre-emphasis 
argument: 0.97, channels: 20, lifter coefficients: 22. Signals in each frame were hamming-windowed. Delta 
MFCC coefficients were included. The MFCC matrix was then provided as input to the recognition network 
(see below). For each time frame, the recognition network outputs a vector of probabilities associated 
with the response categories and silence: {Lee, Moe, Ray, heard, saw, SILENCE}. These probabilities were 
smoothed with a moving average window of 25 ms, and a timeseries of detected categories was defined 
as the category with the highest probability in each frame. 

To assess whether the response was correct, evidence for the target categories (i.e. the words that 
comprise a correct response on a given trial) was sought in the detected category timeseries, using the 
following algorithm. For the first target category (i.e. the subject), frames of the category detection 
timeseries were looped through and matches of the target were counted. Once 10 matches were counted 
(i.e. 50 ms), matches of the next target (i.e. the verb) were counted, and so on. Thus a response was 
counted as correct if the target words were detected for at least 50 ms each in the correct order. The 
recognition time—time at which the correct response is fully detected—was defined as the time at which 
the third target form was identified. Thus the recognition time was typically about 50 ms after the acoustic 
onset of the object word form. The RT for online feedback was defined as the delay between the 
recognition time and whichever stimulus came later, S or V. Hence the online RT measure is related to 
RT_last_[SV] (i.e. tREF = max(tS, tV)), except that it encompasses additional time associated with the 
production of the first two words of the target sequences. The relativization of the measure to max(tS, tV) 
was used because pilot tests showed that this resulted in a low variance measure. It is important that the 
speaker feels that their RT is being measured accurately. Measures relativized to S or max(tS, tV) are the 
two most appropriate measures in this regard because response initiation is absolutely contingent on tS 
and to a lesser extent depends on tV. There is a logical possibility that participants became aware of the 
fact that RT was measured relative to max(tS, tV) and that this influenced their behavior; however, this 
seems very unlikely given the random variation in stimulus timing patterns from trial to trial. Moreover, 
no participants in pilot testing reported awareness of this. If the correct response was not detected, the 
RT was defined as 250 ms after the acoustic offset of the response. Participants were not directly informed 
when the correct response was not detected, but detection failures led to low feedback scores, as 
described below. 
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Beginning after the third trial of each session, the participant received a feedback score. They were 
instructed that the score “is based on when you finish producing the sentence”, and that to achieve high 
scores they “should always begin producing the sentence as soon as you can, and produce the sentence 
quickly” (see Table 23, screens (7,9)). The score was derived from the online RT after each trial as follows. 
First, the set of all RTs from the session were transformed to z-scores, and any values in the upper or lower 
1% of the distribution (i.e. |𝑧𝑧| > 2.326) were excluded. The mean (μRT) and standard deviation (σRT) of the 
remaining values were calculated. The score of the current trial was then defined as one minus the value 
of the cumulative density function of the RT of the current trial i, assuming a normal distribution with μRT 
and σRT, i.e. scor𝑒𝑒𝑖𝑖 = 1 − normcdf(𝑅𝑅𝑇𝑇𝑖𝑖, μ𝑅𝑅𝑅𝑅 ,σ𝑅𝑅𝑅𝑅). Hence the score is confined to the interval [0, 1] and 
values > 0.5 are faster than the mean of the distribution of all previous RTs. The score displayed to the 
participant was multiplied by 100 and rounded to the nearest integer. This score was presented for 1 s 
after the trial. 

Every 24 trials, participants were also informed of a bonus to their compensation, based upon the 
most recent 24 trials. The bonus calculation was defined as  $0.02∑ [2 max(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖 − 0.5,0)].𝑖𝑖

𝑖𝑖−23  Thus 
participants received up to 2 cents per trial when their RT was below the mean. The exact amount depends 
on how far the RT is below the mean, relative to the standard deviation. An important aspect of this design 
is that over the course of a session, as participants become more adept at the task, it becomes more 
difficult to receive higher scores because the mean of their RT distribution becomes lower. Hence 
participants are encouraged to respond as quickly as possible in a way that depends on a criterion that is 
specific to their performance. During the bonus presentation, participants were informed of the total 
bonus earned up to that point, the bonus over the last 24 trials, their average score over the last 24 trials, 
and the number of trials remaining. This information remained visible for 5 seconds and during a 5 s 
countdown to the beginning of the next trial. Every two bonus periods (48 trials), there was a longer 
countdown of 10 seconds. 
 The online recognition network was initially trained on hand-labeled data from pilot tests, and 
subsequently retrained with additional hand-labeled data from early participants in Exp. 1. Only word 
labels were used for this purpose. The initial training dataset included three repetitions of each of the 12 
unique lexical sequences, randomly selected from 12 pilot sessions with different speakers, thus a total 
of 432 sentences. The retraining included three repetitions of the 12 unique sequences from an additional 
7 speakers who had participated in Exp. 1, thus a total of 720 sentences. Of particular importance was 
speaker generalization, i.e. the ability of the network to perform well on new speakers. Some 
hyperparameter testing was conducted to attempt to optimize generalization performance. However, 
because the hyperparameter space is very large, it was not possible to systematically explore anything 
but a small portion of that space. To assess generalization, training was conducted with one session held 
out, repeating for each session. Accuracy on held-out data was assessed using the correct response 
detection procedure described above. The final network design and parameters (see below) had an 
average accuracy of 98.6% correct on held out sessions. 

The final optimized network consisted of three 400-unit bidirectional LSTM layers, each followed by a 
50% dropout layer; these were followed by a fully connected layer, softmax layer, and classification layer. 
Input MFCC matrices (described above) were zero-centered by dimension. Input sequences were sorted 
by longest and shuffled every epoch. The following training parameters were used: optimizer: Adam; 
gradient threshold: 1.0; initial learning rate: 0.001; learning rate drop period: 50; maximum epochs: 200; 
mini-batch size: 64; validation frequency: 20; validation patience: 20. Half of the hand-labeled data were 
used for training, the other half for validation.  
 
Data processing and analysis 
Trials were segmented for offline analysis by forced alignment with Kaldi (Povey et al., 2011). Monophone 
5-state HMMs were trained on MFCCs with a subset of hand-segmented data from all sessions (including 
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pilot sessions). One trial of each of the 12 unique lexical sequences was randomly selected for hand-
labeling from each session, excluding trials from the initial block of the session. There were a total of 720 
hand-labeled tokens used for the training, from 60 different speakers. MFCCs had window sizes of 25 ms 
and frame steps of 5 ms, with 16 cepstral coefficients over the range [50, 10000 Hz]. The monophone 
HMMs were used for forced alignment of all data. Visual inspection of a random subset of trials showed 
that the forced aligned was highly accurate when participants produced the correct response, especially 
in locating the beginning of initial segment of the response, which is important for robust RT estimation. 
Some systematic variation was present between speakers in locations of boundaries of non-initial 
segments, but this variation is only potentially problematic for durational analyses, and less so if speaker 
is included as random factor in regressions.  
 On trials with silences, non-speech noise, or incorrect productions, the forced alignment results in 
abnormal interval durations. To correctly identify errors and exclude data when warranted, trials with 
alignments that met either of the following two criteria were visually and auditorily inspected: (i) there 
was a silent period detected between response words; (ii) the response initiation time relative to S was 
abnormally early or late (beyond ±2.32 st. dev. from the mean, calculated by participant). When 
appropriate, the forced alignments of these trials were either corrected by hand or the trials were labeled 
as errors. A total of 358 trials (1.5% of all trials) were identified as having errors and were excluded from 
analyses of RT or duration. A little more than three quarters of these (280, 78.2%) were identified as lexical 
substitution errors, blends, or covert errors. Other exclusions were trials in which (i) the participant 
produced a non-speech vocalization (i.e. a cough, laugh, or yawn), 23 trials; (ii) failed to complete the 
response in the recording period (which is indicative a very late response initiation), 14 trials; or (iii) an 
intermittent malfunction in the audio recording hardware occurred, 44 trials. 

The first block of trials in each session of Exp. 1 and 2 was excluded from all analyses (39 and 40 trials 
in Exps. 1 and 2, respectively), because participants are becoming familiar with the task and their RT 
patterns are highly nonstationary during these trials. Exp. 3 analyses are treated differently because of 
the blocking of timing patterns. For all RT and duration analyses, RT outliers were excluded on a by-
subject, by-timing pattern basis; specifically, trials with an RT which were outside of ± 2.32 st. dev. from 
the mean (i.e. the upper and lower 1% of a normal distribution) were excluded. Because RT distributions 
are generally skewed leftward with longer right tails, this exclusion strategy primarily excludes late 
responses. For RT_[S], there are 488 outlier exclusions (2.0%) across all three experiments for abnormally 
long RTs, and 26 outliers exclusions (0.11%) for abnormally short RTs. The percentages of exclusions are 
similar for RT_first.  

The overview of results in Fig. 2 shows RT_[S] means and confidence intervals derived from combining 
Exps. 1 and 2 data; to do this, a mixed effects regression was calculated with participant and experiment 
as random effects, with an intercept as a fixed effect. The means shown in Fig. 2 are the residuals of this 
regression with the intercept added; hence the subject- and experiment-effects are subtracted out of 
these data. Elsewhere regressions were conducted within experiment and subject intercept and slope 
terms were included as random effects, unless otherwise indicated. Note that the full random effects 
structure was justified, i.e. a participant-specific intercept and participant-specific slopes for tS, ΔVS, and 
ΔOS; correlations between these were included as well. 

For optimization of models, a particle swarm global optimization was used with a swarm size of 1000 
and cost function step tolerance of 0.001. The cost function was the mean absolute error between the 
model-generated response initiation time and the response initiation time specified in the hypothesized 
behavioral patterns. The RTs modeled in association with Exp. 1 and Exp. 2 were derived from the residuals 
of mixed effects regressions of RT_first_[SVO] with only a fixed intercept and random intercepts for 
participants. The fixed intercept was added to the residuals and the mean was calculated for each timing 
pattern. The same data were used for the linear and nonlinear regressions which are compared with the 
optimized models.  
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